Skip to main content

Advertisement

Log in

Role of the parasympathetic nervous system in cancer initiation and progression

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The nervous system plays an important role in cancer initiation and progression. Accumulated evidences clearly show that the sympathetic nervous system exerts stimulatory effects on carcinogenesis and cancer growth. However, the role of the parasympathetic nervous system in cancer has been much less elucidated. Whereas retrospective studies in vagotomized patients and experiments employing vagotomized animals indicate the parasympathetic nervous system has an inhibitory effect on cancer, clinical studies in patients with prostate cancer indicate it has stimulatory effects. Therefore, the aim of this paper is a critical evaluation of the available data related to the role of the parasympathetic nervous system in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 2019. https://doi.org/10.1158/2159-8290.CD-18-1398.

    Article  PubMed  Google Scholar 

  2. Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol. 2006;180(1–2):104–16. https://doi.org/10.1016/j.jneuroim.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  3. Ondicova K, Mravec B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 2010;11(6):596–601. https://doi.org/10.1016/S1470-2045(09)70337-7.

    Article  PubMed  Google Scholar 

  4. Flint MS, Baum A, Chambers WH, Jenkins FJ. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology. 2007;32(5):470–9. https://doi.org/10.1016/j.psyneuen.2007.02.013.

    Article  CAS  PubMed  Google Scholar 

  5. Wrobel LJ, Le Gal FA. Inhibition of human melanoma growth by a non-cardioselective beta-blocker. J Invest Dermatol. 2015;135(2):525–31. https://doi.org/10.1038/jid.2014.373.

    Article  CAS  PubMed  Google Scholar 

  6. Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, et al. Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun. 2013;4:1403. https://doi.org/10.1038/ncomms2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi M, Liu D, Duan H, Qian L, Wang L, Niu L, et al. The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat. 2011;125(2):351–62. https://doi.org/10.1007/s10549-010-0822-2.

    Article  CAS  PubMed  Google Scholar 

  8. Huan HB, Wen XD, Chen XJ, Wu L, Wu LL, Zhang L, et al. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells. Brain Behav Immun. 2017;59:118–34. https://doi.org/10.1016/j.bbi.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. NeuroImmunoModulation. 2000;8(3):154–64. https://doi.org/10.1159/000054276.

    Article  CAS  PubMed  Google Scholar 

  10. Schuller HM, Cole B. Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis. 1989;10(9):1753–5.

    Article  CAS  Google Scholar 

  11. Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology. 2012;59(115):889–93. https://doi.org/10.5754/hge11476.

    Article  CAS  PubMed  Google Scholar 

  12. Lackovicova L, Banovska L, Bundzikova J, Janega P, Bizik J, Kiss A, et al. Chemical sympathectomy suppresses fibrosarcoma development and improves survival of tumor-bearing rats. Neoplasma. 2011;58(5):424–9.

    Article  CAS  Google Scholar 

  13. Horvathova L, Padova A, Tillinger A, Osacka J, Bizik J, Mravec B. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress. 2016;19:528–34.

    Article  CAS  Google Scholar 

  14. Zhi X, Li B, Li Z, Zhang J, Yu J, Zhang L, et al. Adrenergic modulation of AMPKdependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int J Oncol. 2019;54(5):1625–38. https://doi.org/10.3892/ijo.2019.4753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009;23(2):267–75. https://doi.org/10.1016/j.bbi.2008.10.005.

    Article  CAS  PubMed  Google Scholar 

  16. Park SY, Kang JH, Jeong KJ, Lee J, Han JW, Choi WS, et al. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer. 2011;128(10):2306–16. https://doi.org/10.1002/ijc.25589.

    Article  CAS  PubMed  Google Scholar 

  17. Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634. https://doi.org/10.1038/ncomms10634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006;66(21):10357–64. https://doi.org/10.1158/0008-5472.CAN-06-2496.

    Article  CAS  PubMed  Google Scholar 

  19. Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res. 2006;12(2):369–75. https://doi.org/10.1158/1078-0432.CCR-05-1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563–72. https://doi.org/10.1038/nrc3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52. https://doi.org/10.1158/0008-5472.CAN-10-0522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palm D, Lang K, Niggemann B, Drell TL, Masur K, Zaenker KS, et al. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer. 2006;118(11):2744–9. https://doi.org/10.1002/ijc.21723.

    Article  CAS  PubMed  Google Scholar 

  23. De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 2018;4(2):e172908. https://doi.org/10.1001/jamaoncol.2017.2908.

    Article  PubMed  Google Scholar 

  24. Caygill CP, Knowles RL, Hall R. Increased risk of cancer mortality after vagotomy for peptic ulcer: a preliminary analysis. Eur J Cancer Prev. 1991;1(1):35–7.

    Article  CAS  Google Scholar 

  25. Caygill CP, Hill MJ, Kirkham JS, Northfield TC. Mortality from colorectal and breast cancer in gastric-surgery patients. Int J Colorectal Dis. 1988;3(3):144–8.

    Article  CAS  Google Scholar 

  26. Ekbom A, Lundegardh G, McLaughlin JK, Nyren O. Relation of vagotomy to subsequent risk of lung cancer: population based cohort study. BMJ. 1998;316(7130):518–9. https://doi.org/10.1136/bmj.316.7130.518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watt PC, Patterson CC, Kennedy TL. Late mortality after vagotomy and drainage for duodenal ulcer. Br Med J (Clin Res Ed). 1984;288(6427):1335–8.

    Article  CAS  Google Scholar 

  28. Rabben HL, Zhao CM, Hayakawa Y, Wang TC, Chen D. Vagotomy and gastric tumorigenesis. Curr Neuropharmacol. 2016;14(8):967–72.

    Article  CAS  Google Scholar 

  29. Nelson RL, Briley S, Vaz OP, Abcarian H. The effect of vagotomy and pyloroplasty on colorectal tumor induction in the rat. J Surg Oncol. 1992;51(4):281–6.

    Article  CAS  Google Scholar 

  30. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR. Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res. 2004;24(2b):1003–9.

    PubMed  Google Scholar 

  31. Erin N, Zhao W, Bylander J, Chase G, Clawson G. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat. 2006;99(3):351–64. https://doi.org/10.1007/s10549-006-9219-7.

    Article  CAS  PubMed  Google Scholar 

  32. Erin N, Akdas Barkan G, Harms JF, Clawson GA. Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. Regul Pept. 2008;151(1–3):35–42. https://doi.org/10.1016/j.regpep.2008.03.012.

    Article  CAS  PubMed  Google Scholar 

  33. Partecke LI, Kading A, Trung DN, Diedrich S, Sendler M, Weiss F, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFalpha in a murine pancreatic cancer model. Oncotarget. 2017;8(14):22501–12. https://doi.org/10.18632/oncotarget.15019.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.

    Article  CAS  Google Scholar 

  35. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302. https://doi.org/10.1016/j.ccr.2007.01.012.

    Article  CAS  PubMed  Google Scholar 

  36. Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 2018;8(11):1458–73. https://doi.org/10.1158/2159-8290.CD-18-0046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Al-Wadei MH, Al-Wadei HA, Schuller HM. Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res. 2012;10(2):239–49. https://doi.org/10.1158/1541-7786.MCR-11-0332.

    Article  CAS  PubMed  Google Scholar 

  38. Benthem L, Mundinger TO, Taborsky GJ Jr. Parasympathetic inhibition of sympathetic neural activity to the pancreas. Am J Physiol Endocrinol Metab. 2001;280(2):E378–E381381. https://doi.org/10.1152/ajpendo.2001.280.2.E378.

    Article  CAS  PubMed  Google Scholar 

  39. Benthem L, Mundinger TO, Taborsky GJ Jr. Meal-induced insulin secretion in dogs is mediated by both branches of the autonomic nervous system. Am J Physiol Endocrinol Metab. 2000;278(4):E603–E610610. https://doi.org/10.1152/ajpendo.2000.278.4.E603.

    Article  CAS  PubMed  Google Scholar 

  40. Khasar GS, Green GP, Miao FJP, Levine JD. Vagal modulation of nociception is mediated by adrenomedullary epinephrine in the rat. Eur J Neurosci. 2003;17(4):909–15. https://doi.org/10.1046/j.1460-9568.2003.02503.x.

    Article  PubMed  Google Scholar 

  41. Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. Beta2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33(1):75–90 e7. https://doi.org/10.1016/j.ccell.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  42. Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci. 2019;22(8):1289–305. https://doi.org/10.1038/s41593-019-0430-3.

    Article  CAS  PubMed  Google Scholar 

  43. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361. https://doi.org/10.1126/science.1236361.

    Article  PubMed  Google Scholar 

  44. Coarfa C, Florentin D, Putluri N, Ding Y, Au J, He D, et al. Influence of the neural microenvironment on prostate cancer. Prostate. 2018;78(2):128–39. https://doi.org/10.1002/pros.23454.

    Article  CAS  PubMed  Google Scholar 

  45. Neeman E, Zmora O, Ben-Eliyahu S. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Clin Cancer Res. 2012;18(18):4895–902. https://doi.org/10.1158/1078-0432.CCR-12-1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silva J, Pinto R, Carvalho T, Botelho F, Silva P, Oliveira R, et al. Intraprostatic botulinum toxin Type A injection in patients with benign prostatic enlargement: duration of the effect of a single treatment. BMC Urol. 2009;9:9. https://doi.org/10.1186/1471-2490-9-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. March B, Faulkner S, Jobling P, Steigler A, Blatt A, Denham J, et al. Tumour innervation and neurosignalling in prostate cancer. Nat Rev Urol. 2020;17(2):119–30. https://doi.org/10.1038/s41585-019-0274-3.

    Article  PubMed  Google Scholar 

  48. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6(250):250ra115. https://doi.org/10.1126/scitranslmed.3009569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Guo L, Tao M, Fu W, Xiu D. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma. Chin J Cancer Res. 2016;28(2):180–6. https://doi.org/10.21147/j.issn.1000-9604.2016.02.05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Wu LL, Huan HB, Chen XJ, Wen XD, Yang DP, et al. Sympathetic and parasympathetic innervation in hepatocellular carcinoma. Neoplasma. 2017;64(6):840–6. https://doi.org/10.4149/neo_2017_605.

    Article  CAS  PubMed  Google Scholar 

  52. Jänig W. The integrative action of the autonomic nervous system. Neurobiology of homeostasis. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  53. Mravec B, Ondicova K, Tillinger A, Pecenak J. Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Auton Neurosci. 2015;190:20–5. https://doi.org/10.1016/j.autneu.2015.04.003.

    Article  CAS  PubMed  Google Scholar 

  54. Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–6. https://doi.org/10.1158/1078-0432.CCR-11-0641.

    Article  CAS  PubMed  Google Scholar 

  55. Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature. 2011;477(7364):349–53. https://doi.org/10.1038/nature10368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic signaling: a targetable checkpoint limiting development of the antitumor immune response. Front Immunol. 2018;9:164. https://doi.org/10.3389/fimmu.2018.00164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coelho M, Soares-Silva C, Brandao D, Marino F, Cosentino M, Ribeiro L. beta-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol. 2017;143(2):275–91. https://doi.org/10.1007/s00432-016-2278-1.

    Article  CAS  PubMed  Google Scholar 

  58. Sastry KS, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A, et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem. 2007;282(19):14094–100. https://doi.org/10.1074/jbc.M611370200.

    Article  CAS  PubMed  Google Scholar 

  59. Garg J, Feng YX, Jansen SR, Friedrich J, Lezoualc'h F, Schmidt M, et al. Catecholamines facilitate VEGF-dependent angiogenesis via beta2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget. 2017;8(27):44732–48. https://doi.org/10.18632/oncotarget.17267.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51. https://doi.org/10.1007/s11517-006-0119-0.

    Article  CAS  PubMed  Google Scholar 

  61. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. https://doi.org/10.3389/fpubh.2017.00258.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240. https://doi.org/10.3389/fpubh.2017.00240.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40(4):543–61. https://doi.org/10.1353/pbm.1997.0063.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou X, Ma Z, Zhang L, Zhou S, Wang J, Wang B, et al. Heart rate variability in the prediction of survival in patients with cancer: a systematic review and meta-analysis. J Psychosom Res. 2016;89:20–5. https://doi.org/10.1016/j.jpsychores.2016.08.004.

    Article  PubMed  Google Scholar 

  65. Kloter E, Barrueto K, Klein SD, Scholkmann F, Wolf U. Heart rate variability as a prognostic factor for cancer survival—a systematic review. Front Physiol. 2018;9:623. https://doi.org/10.3389/fphys.2018.00623.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reijmen E, Vannucci L, De Couck M, De Greve J, Gidron Y. Therapeutic potential of the vagus nerve in cancer. Immunol Lett. 2018;202:38–433. https://doi.org/10.1016/j.imlet.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  67. De Couck M, Caers R, Spiegel D, Gidron Y. The role of the vagus nerve in cancer prognosis: a systematic and a comprehensive review. J Oncol. 2018;2018:1236787. https://doi.org/10.1155/2018/1236787.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ma Y, Ren Y, Dai ZJ, Wu CJ, Ji YH, Xu J. IL-6, IL-8 and TNF-alpha levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med. 2017;26(3):421–6. https://doi.org/10.17219/acem/62120.

    Article  PubMed  Google Scholar 

  69. Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6. https://doi.org/10.1038/sj.bjc.6601814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lippitz BE, Harris RA. Cytokine patterns in cancer patients: a review of the correlation between interleukin 6 and prognosis. Oncoimmunology. 2016;5(5):e1093722. https://doi.org/10.1080/2162402X.2015.1093722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakashima J, Tachibana M, Horiguchi Y, Oya M, Ohigashi T, Asakura H, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.

    CAS  PubMed  Google Scholar 

  72. Haensel A, Mills PJ, Nelesen RA, Ziegler MG, Dimsdale JE. The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology. 2008;33(10):1305–12. https://doi.org/10.1016/j.psyneuen.2008.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB. Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med. 2007;69(8):709–16. https://doi.org/10.1097/PSY.0b013e3181576118.

    Article  CAS  PubMed  Google Scholar 

  74. Mani AR, Montagnese S, Jackson CD, Jenkins CW, Head IM, Stephens RC, et al. Decreased heart rate variability in patients with cirrhosis relates to the presence and degree of hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G330–G33838. https://doi.org/10.1152/ajpgi.90488.2008.

    Article  CAS  PubMed  Google Scholar 

  75. Hajiasgharzadeh K, Mirnajafi-Zadeh J, Mani AR. Interleukin-6 impairs chronotropic responsiveness to cholinergic stimulation and decreases heart rate variability in mice. Eur J Pharmacol. 2011;673(1–3):70–7. https://doi.org/10.1016/j.ejphar.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  76. Hewitt M, Rowland JH, Yancik R. Cancer survivors in the United States: age, health, and disability. J Gerontol Ser A Biol Sci Med Sci. 2003;58(1):82–91. https://doi.org/10.1093/gerona/58.1.m82.

    Article  Google Scholar 

  77. Thornton LM, Andersen BL, Blakely WP. The pain, depression, and fatigue symptom cluster in advanced breast cancer: covariation with the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Health Psychol. 2010;29(3):333–7. https://doi.org/10.1037/a0018836.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schaur RJ, Semmelrock HJ, Schauenstein E, Kronberger L. Tumor host relations. II. Influence of tumor extent and tumor site on plasma cortisol of patients with malignant diseases. J Cancer Res Clin Oncol. 1979;93(3):287–92. https://doi.org/10.1007/bf00964585.

    Article  CAS  PubMed  Google Scholar 

  79. Drott C, Svaninger G, Lundholm K. Increased urinary excretion of cortisol and catecholamines in malnourished cancer patients. Ann Surg. 1988;208(5):645–50. https://doi.org/10.1097/00000658-198811000-00017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 2018;15(3):235–45. https://doi.org/10.30773/pi.2017.08.17.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jarczok MN, Kleber ME, Koenig J, Loerbroks A, Herr RM, Hoffmann K, et al. Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory and other frequently used biomarkers in a cross sectional occupational sample. PLoS ONE. 2015;10(2):e0117196. https://doi.org/10.1371/journal.pone.0117196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mikova L, Horvathova L, Ondicova K, Tillinger A, Vannucci LE, Bizik J, et al. Ambiguous effect of signals transmitted by the vagus nerve on fibrosarcoma incidence and survival of tumor-bearing rats. Neurosci Lett. 2015;593:90–4. https://doi.org/10.1016/j.neulet.2015.03.034.

    Article  CAS  PubMed  Google Scholar 

  83. Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM, et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun. 2016;7:10517. https://doi.org/10.1038/ncomms10517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156–66. https://doi.org/10.1038/nn.4477.

    Article  CAS  PubMed  Google Scholar 

  85. Bassi GS, Dias DPM, Franchin M, Talbot J, Reis DG, Menezes GB, et al. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav Immun. 2017;64:330–43. https://doi.org/10.1016/j.bbi.2017.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Oliveira T, Francisco AN, Demartini ZJ, Stebel SL. The role of vagus nerve stimulation in refractory epilepsy. Arq Neuropsiquiatr. 2017;75(9):657–66. https://doi.org/10.1590/0004-282X20170113.

    Article  PubMed  Google Scholar 

  87. Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. 2013;24(9):1451–60. https://doi.org/10.1681/ASN.2013010084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cotero V, Fan Y, Tsaava T, Kressel AM, Hancu I, Fitzgerald P, et al. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat Commun. 2019;10(1):952. https://doi.org/10.1038/s41467-019-08750-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci USA. 2018;115(21):E4843–E48524852. https://doi.org/10.1073/pnas.1719083115.

    Article  CAS  PubMed  Google Scholar 

  90. Steinberg BE, Silverman HA, Robbiati S, Gunasekaran MK, Tsaava T, Battinelli E, et al. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron Med. 2016;3:7–17.

    Article  Google Scholar 

  91. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(1–3):1–17. https://doi.org/10.1016/s1566-0702(00)00215-0.

    Article  CAS  PubMed  Google Scholar 

  92. Agarwal SK, Calaresu FR. Electrical stimulation of nucleus tractus solitarius excites vagal preganglionic cardiomotor neurons of the nucleus ambiguus in rats. Brain Res. 1992;574(1–2):320–4. https://doi.org/10.1016/0006-8993(92)90833-u.

    Article  CAS  PubMed  Google Scholar 

  93. Calleja-Macias IE, Kalantari M, Bernard HU. Cholinergic signaling through nicotinic acetylcholine receptors stimulates the proliferation of cervical cancer cells: an explanation for the molecular role of tobacco smoking in cervical carcinogenesis? Int J Cancer. 2009;124(5):1090–6. https://doi.org/10.1002/ijc.24053.

    Article  CAS  PubMed  Google Scholar 

  94. Chen CS, Lee CH, Hsieh CD, Ho CT, Pan MH, Huang CS, et al. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat. 2011;125(1):73–877. https://doi.org/10.1007/s10549-010-0821-3.

    Article  CAS  PubMed  Google Scholar 

  95. Chen RJ, Ho YS, Guo HR, Wang YJ. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci. 2008;104(2):283–93. https://doi.org/10.1093/toxsci/kfn086.

    Article  CAS  PubMed  Google Scholar 

  96. Jia Y, Sun H, Wu H, Zhang H, Zhang X, Xiao D, et al. nicotine inhibits cisplatin-induced apoptosis via regulating alpha5-nAChR/AKT signaling in human gastric cancer cells. PLoS ONE. 2016;11(2):e0149120. https://doi.org/10.1371/journal.pone.0149120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khalil AA, Jameson MJ, Broaddus WC, Lin PS, Chung TD. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumor Pathol. 2013;30(2):73–83. https://doi.org/10.1007/s10014-012-0101-5.

    Article  CAS  PubMed  Google Scholar 

  98. Medjber K, Freidja ML, Grelet S, Lorenzato M, Maouche K, Nawrocki-Raby B, et al. Role of nicotinic acetylcholine receptors in cell proliferation and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer. 2015;87(3):258–64. https://doi.org/10.1016/j.lungcan.2015.01.001.

    Article  PubMed  Google Scholar 

  99. Trombino S, Cesario A, Margaritora S, Granone P, Motta G, Falugi C, et al. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Cancer Res. 2004;64(1):135–45.

    Article  CAS  Google Scholar 

  100. Shin VY, Wu WK, Chu KM, Wong HP, Lam EK, Tai EK, et al. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res. 2005;3(11):607–15. https://doi.org/10.1158/1541-7786.MCR-05-0106.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Q, Tang X, Zhang ZF, Velikina R, Shi S, Le AD. Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res. 2007;13(16):4686–94. https://doi.org/10.1158/1078-0432.CCR-06-2898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lane D, Gray EA, Mathur RS, Mathur SP. Up-regulation of vascular endothelial growth factor-C by nicotine in cervical cancer cell lines. Am J Reprod Immunol. 2005;53(3):153–8. https://doi.org/10.1111/j.1600-0897.2005.00259.x.

    Article  CAS  PubMed  Google Scholar 

  103. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci. 2007;97(2):279–87. https://doi.org/10.1093/toxsci/kfm060.

    Article  CAS  PubMed  Google Scholar 

  104. Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124(1):36–45. https://doi.org/10.1002/ijc.23894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kunigal S, Ponnusamy MP, Momi N, Batra SK, Chellappan SP. Nicotine, IFN-gamma and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer. 2012;11:24. https://doi.org/10.1186/1476-4598-11-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shin VY, Jin HC, Ng EK, Sung JJ, Chu KM, Cho CH. Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Lett. 2010;292(2):237–45. https://doi.org/10.1016/j.canlet.2009.12.011.

    Article  CAS  PubMed  Google Scholar 

  107. Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, et al. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol. 2011;18(6):1782–90. https://doi.org/10.1245/s10434-010-1504-3.

    Article  PubMed  Google Scholar 

  108. Xiang T, Fei R, Wang Z, Shen Z, Qian J, Chen W. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol Rep. 2016;35(1):205–10. https://doi.org/10.3892/or.2015.4363.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang C, Ding XP, Zhao QN, Yang XJ, An SM, Wang H, et al. Role of alpha7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. Oncotarget. 2016;7(37):59199–208. https://doi.org/10.18632/oncotarget.10498.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zong Y, Zhang ST, Zhu ST. Nicotine enhances migration and invasion of human esophageal squamous carcinoma cells which is inhibited by nimesulide. World J Gastroenterol. 2009;15(20):2500–5. https://doi.org/10.3748/wjg.15.2500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo J, Ibaragi S, Zhu T, Luo LY, Hu GF, Huppi PS, et al. Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. Cancer Res. 2008;68(20):8473–81. https://doi.org/10.1158/0008-5472.CAN-08-0131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zheng Y, Ritzenthaler JD, Roman J, Han S. Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. Am J Respir Cell Mol Biol. 2007;37(6):681–90. https://doi.org/10.1165/rcmb.2007-0051OC.

    Article  CAS  PubMed  Google Scholar 

  113. Banerjee J, Al-Wadei HA, Schuller HM. Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts. Eur J Cancer. 2013;49(5):1152–8. https://doi.org/10.1016/j.ejca.2012.10.015.

    Article  CAS  PubMed  Google Scholar 

  114. Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM. Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm Pharmacol Ther. 2007;20(6):629–41. https://doi.org/10.1016/j.pupt.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  115. Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA. 2006;103(16):6332–7. https://doi.org/10.1073/pnas.0509313103.

    Article  CAS  PubMed  Google Scholar 

  116. Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, et al. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis. 2005;26(7):1182–95. https://doi.org/10.1093/carcin/bgi072.

    Article  CAS  PubMed  Google Scholar 

  117. Chen RJ, Ho YS, Guo HR, Wang YJ. Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicol Sci. 2010;115(1):118–30. https://doi.org/10.1093/toxsci/kfq028.

    Article  CAS  PubMed  Google Scholar 

  118. Chipitsyna G, Gong Q, Anandanadesan R, Alnajar A, Batra SK, Wittel UA, et al. Induction of osteopontin expression by nicotine and cigarette smoke in the pancreas and pancreatic ductal adenocarcinoma cells. Int J Cancer. 2009;125(2):276–85. https://doi.org/10.1002/ijc.24388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dinicola S, Morini V, Coluccia P, Proietti S, D'Anselmi F, Pasqualato A, et al. Nicotine increases survival in human colon cancer cells treated with chemotherapeutic drugs. Toxicol In Vitro. 2013;27(8):2256–63. https://doi.org/10.1016/j.tiv.2013.09.020.

    Article  CAS  PubMed  Google Scholar 

  120. Imabayashi T, Uchino J, Osoreda H, Tanimura K, Chihara Y, Tamiya N, et al. Nicotine induces resistance to erlotinib therapy in non-small-cell lung cancer cells treated with serum from human patients. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11030282.

    Article  Google Scholar 

  121. Nishioka T, Luo LY, Shen L, He H, Mariyannis A, Dai W, et al. Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability. Br J Cancer. 2014;110(7):1785–92. https://doi.org/10.1038/bjc.2014.78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shimizu R, Ibaragi S, Eguchi T, Kuwajima D, Kodama S, Nishioka T, et al. Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol. 2019;54(1):283–94. https://doi.org/10.3892/ijo.2018.4631.

    Article  CAS  PubMed  Google Scholar 

  123. Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem. 2005;280(11):10781–9. https://doi.org/10.1074/jbc.M500084200

    Article  CAS  PubMed  Google Scholar 

  124. Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y, Tanaka N, Kosaka T, et al. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther. 2015;14(9):2112–200. https://doi.org/10.1158/1535-7163.MCT-15-0140.

    Article  CAS  PubMed  Google Scholar 

  125. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol. 2007;221(3):261–7. https://doi.org/10.1016/j.taap.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  126. Al-Wadei HA, Al-Wadei MH, Schuller HM. Cooperative regulation of non-small cell lung carcinoma by nicotinic and beta-adrenergic receptors: a novel target for intervention. PLoS ONE. 2012;7(1):e29915. https://doi.org/10.1371/journal.pone.0029915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang C, Yu P, Zhu L, Zhao Q, Lu X, Bo S. Blockade of alpha7 nicotinic acetylcholine receptors inhibit nicotine-induced tumor growth and vimentin expression in non-small cell lung cancer through MEK/ERK signaling way. Oncol Rep. 2017;38(6):3309–18. https://doi.org/10.3892/or.2017.6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, et al. MG624, an alpha7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 2012;15(1):99–114. https://doi.org/10.1007/s10456-011-9246-9.

    Article  CAS  PubMed  Google Scholar 

  129. Davis R, Rizwani W, Banerjee S, Kovacs M, Haura E, Coppola D, et al. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS ONE. 2009;4(10):e7524. https://doi.org/10.1371/journal.pone.0007524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7(7):833–9. https://doi.org/10.1038/89961.

    Article  CAS  PubMed  Google Scholar 

  131. Shin VY, Wu WK, Ye YN, So WH, Koo MW, Liu ES, et al. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis. 2004;25(12):2487–95. https://doi.org/10.1093/carcin/bgh266.

    Article  CAS  PubMed  Google Scholar 

  132. Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, et al. Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia. 2012;14(12):1102–14. https://doi.org/10.1593/neo.121044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ye YN, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH. Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther. 2004;308(1):66–72. https://doi.org/10.1124/jpet.103.058321.

    Article  CAS  PubMed  Google Scholar 

  134. Li H, Wang S, Takayama K, Harada T, Okamoto I, Iwama E, et al. Nicotine induces resistance to erlotinib via cross-talk between alpha 1 nAChR and EGFR in the non-small cell lung cancer xenograft model. Lung Cancer. 2015;88(1):1–8. https://doi.org/10.1016/j.lungcan.2015.01.017.

    Article  PubMed  Google Scholar 

  135. Warren GW, Romano MA, Kudrimoti MR, Randall ME, McGarry RC, Singh AK, et al. Nicotinic modulation of therapeutic response in vitro and in vivo. Int J Cancer. 2012;131(11):2519–27. https://doi.org/10.1002/ijc.27556.

    Article  CAS  PubMed  Google Scholar 

  136. Zhu BQ, Heeschen C, Sievers RE, Karliner JS, Parmley WW, Glantz SA, et al. Second hand smoke stimulates tumor angiogenesis and growth. Cancer Cell. 2003;4(3):191–6. https://doi.org/10.1016/s1535-6108(03)00219-8.

    Article  CAS  PubMed  Google Scholar 

  137. Rimmaudo LE, de la Torre E, Sacerdote de Lustig E, Sales ME. Muscarinic receptors are involved in LMM3 tumor cells proliferation and angiogenesis. Biochem Biophys Res Commun. 2005;334(4):1359–64. https://doi.org/10.1016/j.bbrc.2005.07.031.

    Article  CAS  PubMed  Google Scholar 

  138. Espanol A, Eijan AM, Mazzoni E, Davel L, Jasnis MA, Sacerdote De Lustig E, et al. Nitric oxide synthase, arginase and cyclooxygenase are involved in muscarinic receptor activation in different murine mammary adenocarcinoma cell lines. Int J Mol Med. 2002;9(6):651–7.

    CAS  PubMed  Google Scholar 

  139. Espanol AJ, Sales ME. Different muscarinic receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines. Int J Mol Med. 2004;13(2):311–7.

    CAS  PubMed  Google Scholar 

  140. Espanol AJ, Salem A, Rojo D, Sales ME. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase. Int Immunopharmacol. 2015;29(1):87–92. https://doi.org/10.1016/j.intimp.2015.03.018.

    Article  CAS  PubMed  Google Scholar 

  141. Cheng K, Samimi R, Xie G, Shant J, Drachenberg C, Wade M, et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2008;295(3):G591–G597597. https://doi.org/10.1152/ajpgi.00055.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cheng K, Shang AC, Drachenberg CB, Zhan M, Raufman JP. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget. 2017;8(13):21106–14. https://doi.org/10.18632/oncotarget.15500.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Frucht H, Jensen RT, Dexter D, Yang WL, Xiao Y. Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin Cancer Res. 1999;5(9):2532–9.

    CAS  PubMed  Google Scholar 

  144. Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68(10):3573–8. https://doi.org/10.1158/0008-5472.CAN-07-6810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Peng Z, Heath J, Drachenberg C, Raufman JP, Xie G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer. 2013;13:204. https://doi.org/10.1186/1471-2407-13-204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xie G, Cheng K, Shant J, Raufman JP. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G755–G763763. https://doi.org/10.1152/ajpgi.90519.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Raufman JP, Cheng K, Saxena N, Chahdi A, Belo A, Khurana S, et al. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem Biophys Res Commun. 2011;415(2):319–24. https://doi.org/10.1016/j.bbrc.2011.10.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cheng K, Zimniak P, Raufman JP. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of H508 human colon cancer cells. Cancer Res. 2003;63(20):6744–50.

    CAS  PubMed  Google Scholar 

  149. Zhao Q, Gu X, Zhang C, Lu Q, Chen H, Xu L. Blocking M2 muscarinic receptor signaling inhibits tumor growth and reverses epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Cancer Biol Ther. 2015;16(4):634–43. https://doi.org/10.1080/15384047.2015.1029835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhao Q, Yue J, Zhang C, Gu X, Chen H, Xu L. Inactivation of M2 AChR/NF-kappaB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC). Oncotarget. 2015;6(30):29335–46. https://doi.org/10.18632/oncotarget.5004.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hua N, Wei X, Liu X, Ma X, He X, Zhuo R, et al. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1. PLoS ONE. 2012;7(12):e53170. https://doi.org/10.1371/journal.pone.0053170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ami N, Koga K, Fushiki H, Ueno Y, Ogino Y, Ohta H. Selective M3 muscarinic receptor antagonist inhibits small-cell lung carcinoma growth in a mouse orthotopic xenograft model. J Pharmacol Sci. 2011;116(1):81–8. https://doi.org/10.1254/jphs.10308FP.

    Article  CAS  PubMed  Google Scholar 

  153. Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 2007;67(8):3936–44. https://doi.org/10.1158/0008-5472.CAN-06-2484.

    Article  CAS  PubMed  Google Scholar 

  154. Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y, et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep. 2017;7:40802. https://doi.org/10.1038/srep40802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang T, He W, Cui F, Xia J, Zhou R, Wu Z, et al. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget. 2016;7(14):18085–944. https://doi.org/10.18632/oncotarget.7634.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Nguyen PH, Touchefeu Y, Durand T, Aubert P, Duchalais E, Bruley des Varannes S, et al. Acetylcholine induces stem cell properties of gastric cancer cells of diffuse type. Tumour Biol. 2018;40(9):1010428318799028. https://doi.org/10.1177/1010428318799028.

    Article  CAS  PubMed  Google Scholar 

  157. Mannan Baig A, Khan NA, Effendi V, Rana Z, Ahmad HR, Abbas F. Differential receptor dependencies: expression and significance of muscarinic M1 receptors in the biology of prostate cancer. Anticancer Drugs. 2017;28(1):75–877. https://doi.org/10.1097/CAD.0000000000000432.

    Article  CAS  PubMed  Google Scholar 

  158. Wang N, Yao M, Xu J, Quan Y, Zhang K, Yang R, et al. Autocrine activation of CHRM3 promotes prostate cancer growth and castration resistance via CaM/CaMKK-mediated phosphorylation of Akt. Clin Cancer Res. 2015;21(20):4676–85. https://doi.org/10.1158/1078-0432.CCR-14-3163.

    Article  CAS  PubMed  Google Scholar 

  159. Parnell EA, Calleja-Macias IE, Kalantari M, Grando SA, Bernard HU. Muscarinic cholinergic signaling in cervical cancer cells affects cell motility via ERK1/2 signaling. Life Sci. 2012;91(21–22):1093–8. https://doi.org/10.1016/j.lfs.2012.02.020.

    Article  CAS  PubMed  Google Scholar 

  160. Alessandrini F, Cristofaro I, Di Bari M, Zasso J, Conti L, Tata AM. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int Immunopharmacol. 2015;29(1):105–9. https://doi.org/10.1016/j.intimp.2015.05.032.

    Article  CAS  PubMed  Google Scholar 

  161. Cristofaro I, Spinello Z, Matera C, Fiore M, Conti L, De Amici M, et al. Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochem Int. 2018;118:52–60. https://doi.org/10.1016/j.neuint.2018.04.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Slovak Research and Development Agency (APVV-17-0090) and VEGA Grant 2/0028/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tibensky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibensky, M., Mravec, B. Role of the parasympathetic nervous system in cancer initiation and progression. Clin Transl Oncol 23, 669–681 (2021). https://doi.org/10.1007/s12094-020-02465-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02465-w

Keywords

Navigation