Skip to main content

Advertisement

Log in

Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Increasing evidence shows that bone marrow stromal cells (BMSCs) have antitumor activities both in vitro and in animal models. Further studies fleshed out the supportive data that the antitumor activity of BMSCs could be markedly enhanced by cytokines such as IL-2 and IFN-β (interferon). However, powerful strategies to activate BMSCs other than by genetically engineering interventions are still required.

Methods

In this study, new methods of generating antitumor activities of murine marrow-originated MSCs pulsed with homologous tumor-derived exosomes (TEX) were explored to yield potent immune effectors against hepatocellular carcinoma cells in vitro.

Results

The results showed that BMSCs pulsed with exosomes and IFN-γ exhibited increased migration ability with a result of 163.22 ± 26.90 versus 129.89 ± 29.28 cells/HP by transwell determination (p < 0.05). The inhibition of homologous hepatocellular carcinoma cells line H22 cells by exosomes pulsed BMSCs was significantly increased by 41.9 % compared with control (p < 0.05), and flow cytometry analysis showed that the cell cycle of H22 cells was arrested in G0/G1 phase. Meanwhile, western blot analysis showed that PCNA protein expression in the supernatant of H22 cells was significantly decreased.

Conclusions

This study demonstrated that BMSCs pulsed with TEX could enhance its antitumor activities, which might be regarded as a novel promising antitumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. He J, Gu D, Wu X et al (2005) Major causes of death among men and women in China. N Engl J Med 353:1124–1134

    Article  PubMed  CAS  Google Scholar 

  3. Blum HE (2005) Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 11:7391–7400

    PubMed  CAS  Google Scholar 

  4. Said A, Lucey MR (2008) Liver transplantation: an update 2008. Curr Opin Gastroenterol 24:339–345

    Article  PubMed  Google Scholar 

  5. Avila MA, Berasain C, Sangro B et al (2006) New therapies for hepatocellular carcinoma. Oncogene 25:3866–3884

    Article  PubMed  CAS  Google Scholar 

  6. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  7. Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102:3483–3493

    Article  PubMed  CAS  Google Scholar 

  8. Sato Y, Araki H, Kato J et al (2005) Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106:756–763

    Article  PubMed  CAS  Google Scholar 

  9. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  10. Tocci A, Forte L (2003) Mesenchymal stem cell: use and perspectives. Hematol J 4:92–96

    Article  PubMed  Google Scholar 

  11. Nakamura K, Ito Y, Kawano Y et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164

    Article  PubMed  CAS  Google Scholar 

  12. Tropel P, Noel D, Platet N et al (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295:395–406

    Article  PubMed  CAS  Google Scholar 

  13. Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711

    Article  PubMed  Google Scholar 

  14. Duan HF, Wu CT, Wu DL et al (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8:467–474

    Article  PubMed  CAS  Google Scholar 

  15. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    Article  PubMed  CAS  Google Scholar 

  16. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619

    Article  PubMed  CAS  Google Scholar 

  17. Bai L, Caplan A, Lennon D et al (2007) Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res 32:353–362

    Article  PubMed  CAS  Google Scholar 

  18. Khakoo AY, Pati S, Anderson SA et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    Article  PubMed  CAS  Google Scholar 

  19. Jiang HF, Ren J (2008) Inoculation of murine bone mesenchymal stem cells induces tumor necrosis in mouse with orthotopic hepatocellular carcinoma. J Peking Univ (Health Sci) 40:453–458

    CAS  Google Scholar 

  20. Studeny M, Marini FC, Champlin RE et al (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 62:3603–3608

    PubMed  CAS  Google Scholar 

  21. Stagg J, Pommey S, Eliopoulos N et al (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107:2570–2577

    Article  PubMed  CAS  Google Scholar 

  22. Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    PubMed  CAS  Google Scholar 

  23. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    Article  PubMed  CAS  Google Scholar 

  24. Heijnen HF, Schiel AE, Fijnheer R et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    PubMed  CAS  Google Scholar 

  25. Skokos D, Botros HG, Demeure C et al (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045

    PubMed  CAS  Google Scholar 

  26. Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600

    Article  PubMed  CAS  Google Scholar 

  27. Thery C, Duban L, Segura E et al (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162

    Article  PubMed  CAS  Google Scholar 

  28. Escudier B, Dorval T, Chaput N et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 3:10–21

    Article  PubMed  Google Scholar 

  29. Morse MA, Garst J, Osada T et al (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9–19

    Article  PubMed  Google Scholar 

  30. Andre F, Schartz NE, Chaput N et al (2002) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20:A28–A31

    Article  PubMed  CAS  Google Scholar 

  31. Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    Article  PubMed  CAS  Google Scholar 

  32. Adams M, Navabi H, Croston D et al (2005) The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. Vaccine 23:2374–2378

    Article  PubMed  CAS  Google Scholar 

  33. Lamparski HG, Metha-Damani A, Yao JY et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226

    Article  PubMed  CAS  Google Scholar 

  34. Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  PubMed  CAS  Google Scholar 

  35. Young D, Roman E, Moreno C et al (1993) Molecular chaperones and the immune response. Philos Trans R Soc Lond B Biol Sci 339:363–367

    Article  PubMed  CAS  Google Scholar 

  36. Multhoff G, Mizzen L, Winchester CC et al (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627–1636

    Article  PubMed  CAS  Google Scholar 

  37. Goldman B (2002) Cancer vaccines: finding the best way to train the immune system. J Natl Cancer Inst 94:1523–1526

    Article  PubMed  Google Scholar 

  38. Udono H, Srivastava PK (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 152:5398–5403

    PubMed  CAS  Google Scholar 

  39. Tille JC, Pepper MS (2002) Mesenchymal cells potentiate vascular endothelial growth factor-induced angiogenesis in vitro. Exp Cell Res 280:179–191

    Article  PubMed  CAS  Google Scholar 

  40. Yu J, Ustach C, Kim HR (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36:49–59

    Article  PubMed  CAS  Google Scholar 

  41. Gastpar R, Gehrmann M, Bausero MA et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    Article  PubMed  CAS  Google Scholar 

  42. Nakamizo A, Marini F, Amano T et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    PubMed  CAS  Google Scholar 

  43. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  44. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  45. Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  46. Kang SG, Jeun SS, Lim JY et al (2005) Cytotoxicity of rat marrow stromal cells against malignant glioma cells. Childs Nerv Syst 21:528–538

    Article  PubMed  Google Scholar 

  47. Cha CH, Saif MW, Yamane BH et al (2010) Hepatocellular carcinoma: current management. Curr Probl Surg 47:10–67

    Article  PubMed  Google Scholar 

  48. Hamada H, Kobune M, Nakamura K et al (2005) Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 96:149–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Natural Science Foundation of China (NSFC) 30471995, National Basic Research Program of China 2009CB521700 (973 Program) and Capital Development Grant 2007-2053 Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Jiang, H., Jia, J. et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol 14, 764–773 (2012). https://doi.org/10.1007/s12094-012-0860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0860-9

Keywords

Navigation