Skip to main content

Advertisement

Log in

Molecular basis for the treatment of renal cell carcinoma

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is a heterogeneous malignancy whose incidence rate has notably increased in recent years without any evident reason. Traditionally, RCC has been resistant to classic treatments (chemotherapy, radiotherapy and hormonal therapy), with only a small percentage of patients benefiting from cytokine therapy. Different hereditary syndromes have been associated with RCC, Von Hippel Lindau (VHL) being the most important syndrome. Understanding key molecular pathways implicated in the tumorigenesis of RCC has crystallised in the development of more effective therapies. Specifically, drugs targeting VEGF (bevacizumab, sunitinib, sorafenib, axitinib, pazopanib) and PI3K-mTOR (temsirolimus and everolimus) have become the cornerstone of renal cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004

    Article  CAS  PubMed  Google Scholar 

  2. Latif F, Tory K, Gnarra J et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  CAS  PubMed  Google Scholar 

  3. Linehan WM, Walther MM, Zbar B (2003) The genetic basis of cancer of the kidney. J Urol 170: 2163–2172

    Article  CAS  PubMed  Google Scholar 

  4. Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. Lancet 361:2059–2067

    Article  CAS  PubMed  Google Scholar 

  5. Knudson AG Jr (1986) Genetics of human cancer. Annu Rev Genet 20:231–251

    Article  PubMed  Google Scholar 

  6. Shuin T, Kondo K, Torigoe S et al (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54:2852–2855

    CAS  PubMed  Google Scholar 

  7. Herman JG, Latif F, Weng Y et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704

    Article  CAS  PubMed  Google Scholar 

  8. Maer ER (2004) VHL disease. Curr Mol Med 4:833

    Article  Google Scholar 

  9. Brauch H, Weirich G, Brieger J et al (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60:1942–1948

    CAS  PubMed  Google Scholar 

  10. Schraml P, Struckmann K, Hatz F et al (2002) VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 196:186–193

    Article  CAS  PubMed  Google Scholar 

  11. Iliopoulos O, Kibel A, Gray S et al (1995) Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1:822–826

    Article  CAS  PubMed  Google Scholar 

  12. Gnarra JR, Zhou S, Merrill MJ et al (1996) Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci U S A 93:10589–10594

    Article  CAS  PubMed  Google Scholar 

  13. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90:4304–4308

    Article  CAS  PubMed  Google Scholar 

  14. Iliopoulos O, Levy AP, Jiang C et al (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A 93:10595–10599

    Article  CAS  PubMed  Google Scholar 

  15. Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86:670–674

    Article  CAS  PubMed  Google Scholar 

  16. de Paulsen N, Brychzy A, Fournier MC et al (2001) Role of transforming growth factor-alpha in von Hippel-Lindau (VHL) (−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci U S A 98:1387–1392

    Article  PubMed  Google Scholar 

  17. Harris AL (2002) Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  18. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682

    Article  CAS  PubMed  Google Scholar 

  19. Zbar B, Tory K, Merino M et al (1994) Hereditary papillary renal cell carcinoma. J Urol 151:561–566

    CAS  PubMed  Google Scholar 

  20. Schmidt L, Junker K, Nakaigawa N et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt L, Junker K, Weirich G et al (1998) Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58:1719–1722

    CAS  PubMed  Google Scholar 

  22. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6:637–645

    Article  CAS  PubMed  Google Scholar 

  23. Zhuang Z, Park WS, Pack S et al (1998) Trisomy 7: harboring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Gen 20:66–69

    Article  CAS  Google Scholar 

  24. Kovacs G (1993) Molecular cytogenetics of renal cell tumors. Adv Cancer Res 62:89–124

    Article  CAS  PubMed  Google Scholar 

  25. Schimdt L, Junker K, Nakaigawa N et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350

    Article  CAS  Google Scholar 

  26. Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  27. Kiuru M, Launonen V (2004) Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 4:869–875

    Article  CAS  PubMed  Google Scholar 

  28. Toro JR, Nickerson ML, Wei MH et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106

    Article  CAS  PubMed  Google Scholar 

  29. Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

    Article  CAS  PubMed  Google Scholar 

  30. Isaacs JS, Jung YJ, Mole DR et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153

    Article  CAS  PubMed  Google Scholar 

  31. Birt AR, Hogg GR, Dubé WJ (1997) Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 133:1674–1677

    Google Scholar 

  32. Pavlovich CP, Walther MM, Eyler RA et al (2002) Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol 26:1542–1552

    Article  PubMed  Google Scholar 

  33. Nickerson ML, Warren MB, Toro JR et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell 2:157–164

    Article  CAS  PubMed  Google Scholar 

  34. Vocke CD, Yang Y, Pavlovich CP et al (2005) High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors. J Natl Cancer Inst 97:931–935

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt LS, Nickerson ML, Warren MB et al (2005) Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubé syndrome. Am J Hum Genet 76:1023–1033

    Article  CAS  PubMed  Google Scholar 

  36. Zhong H, Bowen JP (2007) Molecular design and clinical development of VEGFR kinase inhibitors. Curr Top Med Chem 7:1379–1393

    Article  CAS  PubMed  Google Scholar 

  37. Kiselyov A, Balakin KV, Tkachenko SE (2007) VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs 16:83–107

    Article  CAS  PubMed  Google Scholar 

  38. Dvorak HF, Brown LF, Detmar M et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    CAS  PubMed  Google Scholar 

  39. Benjamin LE, Golijanin D, Itin A et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi A, Sasaki H, Kim SJ et al (1994) Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 54:4233–4237

    CAS  PubMed  Google Scholar 

  41. Igarashi H, Esumi M, Ishida H et al (2002) Vascular endothelial growth factor overexpression is correlated with von Hippel-Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma. Cancer 95:47–53

    Article  CAS  PubMed  Google Scholar 

  42. Nicol D, Hii SI, Walsh M et al (1997) Vascular endothelial growth factor expression is increased in renal cell carcinoma. J Urol 157:1482–1486

    Article  CAS  PubMed  Google Scholar 

  43. Na X, Wu G, Ryan CK et al (2003) Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol 170:588–592

    Article  CAS  PubMed  Google Scholar 

  44. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  CAS  PubMed  Google Scholar 

  45. Fingar DC, Salama S, Tsou C et al (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487

    Article  CAS  PubMed  Google Scholar 

  46. Gingras AC, Gygi SP, Raught B et al (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  CAS  PubMed  Google Scholar 

  47. Higashiyama S, Iwabuki H, Morimoto C et al (2008) Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci 99:214–220

    Article  CAS  PubMed  Google Scholar 

  48. Lager DJ, Slagel DD, Palechek PL (1994) The expression of epidermal growth factor receptor and transforming growth factor alpha in renal cell carcinoma. Mod Pathol 7:544–548

    CAS  PubMed  Google Scholar 

  49. Pu YS, Huang CY, Kuo YZ et al (2009) Characterization of membranous and cytoplasmic EGFR expression in human normal renal cortex and renal cell carcinoma. J Biomed Sci 16:82

    Article  PubMed  CAS  Google Scholar 

  50. Smith K, Gunaratnam L, Morley M et al (2005) Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/-renal cancer. Cancer Res 65:5221–5230

    Article  CAS  PubMed  Google Scholar 

  51. Gunaratnam L, Morley M, Franovic A et al (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells. 278:44966–44974

    CAS  Google Scholar 

  52. Prewett M, Rothman M, Waksal H et al (1998) Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 4:2957–2966

    CAS  PubMed  Google Scholar 

  53. Jermann M, Stahel RA, Salzberg M et al (2006) A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother Pharmacol 57:533–539

    Article  CAS  PubMed  Google Scholar 

  54. Motzer RJ, Amato R, Todd M et al (2003) Phase II trial of antiepidermal growth factor antibody C225 in patients with advanced renal cell carcinoma. Invest New Drugs 21:99–101

    Article  CAS  PubMed  Google Scholar 

  55. Bukowski RM, Kabbinavar FF, Figlin RA et al (2007) Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol 25:4536–4541

    Article  CAS  PubMed  Google Scholar 

  56. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  CAS  PubMed  Google Scholar 

  57. Escudier B, Pluzanska A, Koralewski P et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111

    Article  PubMed  Google Scholar 

  58. Escudier BJ, Bellmunt J, Negrier S et al (2009) Final results of the phase III, randomized, double-blind AVOREN trial of first-line bevacizumab (BEV)+interferon-a2a (IFN) in metastatic renal cell carcinoma (mRCC) [abstract 5020]. J Clin Oncol 27[Suppl]:15s

    Google Scholar 

  59. Rini BI, Halabi S, Rosenberg JE et al (2008) Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26:5422–5428

    Article  CAS  PubMed  Google Scholar 

  60. Rini BI, Halabi S, Rosenberg J et al (2009) Bevacizumab plus interferonalpha versus interferonalpha monotherapy in patients with metastatic renal cell carcinoma: results of overall survival for CALGB 90206 [abstract LBA5019]. J Clin Oncol 27[Suppl]:18s

    Google Scholar 

  61. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    CAS  PubMed  Google Scholar 

  62. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  63. Motzer RJ, Hutson TE, Tomczak P et al (2009) Overall survival and updated results for sunitinib compared with interferon (IFN)-alfa in patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol 27:3584–3590

    Article  CAS  PubMed  Google Scholar 

  64. Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  CAS  PubMed  Google Scholar 

  65. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  CAS  PubMed  Google Scholar 

  66. Escudier B, Eisen T, Stadler WM et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27:3312–3318

    Article  CAS  PubMed  Google Scholar 

  67. Rugo HS, Herbst RS, Liu G et al (2005) Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol 23:5474–5783

    Article  CAS  PubMed  Google Scholar 

  68. Rixe O, Bukowski RM, Michaelson MD et al (2007) Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol 8:975–984

    Article  PubMed  Google Scholar 

  69. Rini B, Wilding GT, Hudes G et al (2009) Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol 27:4462–4468

    Article  CAS  PubMed  Google Scholar 

  70. Sonpavde G, Hutson TE (2007) Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep 9:115–119

    Article  CAS  PubMed  Google Scholar 

  71. Hutson T, Davis ID, Machiels JP et al (2007) Pazopanib (GW786034) is active in metastatic renal cell carcinoma (RCC): interim results of a phase II randomised discontinuation trial (RDT). J Clin Oncol 25[Suppl]:5031

    Google Scholar 

  72. Sternberg CN, Szczylik C, Lee E et al (2009) A randomized, double-blind phase III study of pazopanib in treatment-naive and cytokine-pretreated patients with advanced renal cell carcinoma (RCC). J Clin Oncol 27[Suppl]:5021

    Google Scholar 

  73. Hudson CC, Liu M, Chiang GG et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014

    Article  CAS  PubMed  Google Scholar 

  74. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  75. Motzer R, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebocontrolled phase III trial. Lancet 372:449–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Carles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez, C., Morales, R., Muñoz, E. et al. Molecular basis for the treatment of renal cell carcinoma. Clin Transl Oncol 12, 15–21 (2010). https://doi.org/10.1007/s12094-010-0461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0461-4

Keywords

Navigation