Skip to main content

Advertisement

Log in

Epidermal stem cells in skin homeostasis and cutaneous carcinomas

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Skin and squamous epithelia regulate water and heat homeostasis and constitute our first barrier of protection against pathogens. Cells from the outermost layer of the skin, the cornified envelope (stratum corneum), are constantly being shed, imposing a constant demand for replenishment to maintain homeostasis. Hair follicles and sebaceous glands provide protective hair growth and skin sebum, and continuously undergo cycles of growth and regression. The outstanding ability of the epidermis, hair follicles and sebaceous glands to self-renew relies on a population of adult stem cells that are maintained throughout our life span. In this review we will provide an overview of our current knowledge about epidermal stem cells, and some of the molecular mechanisms that identify them and dictate their behaviour. We will also summarise our view on the possible link between adult epidermal stem cells and cancer stem cells within skin and squamous neoplasias. The potential of epidermal stem cells in regenerative medicine and for designing targeted antitumoral therapies will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shizuru JA, Negrin RS, Weissman IL (2005) Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56:509–538

    Article  PubMed  CAS  Google Scholar 

  2. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  3. Asselin-Labat ML, Sutherland KD, Barker H et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209

    Article  PubMed  CAS  Google Scholar 

  4. Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  5. Gill J, Malin M, Holländer GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3:635–642

    Article  PubMed  CAS  Google Scholar 

  6. Bleul CC, Corbeaux T, Reuter A et al (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    Article  PubMed  CAS  Google Scholar 

  7. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    Article  PubMed  CAS  Google Scholar 

  8. Merkle FT, Alvarez-Buylla A (2006) Neural stem cells in mammalian development. Curr Opin Cell Biol 18:704–709

    Article  PubMed  CAS  Google Scholar 

  9. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    Article  PubMed  CAS  Google Scholar 

  10. Holterman CE, Rudnicki MA (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16:575–584

    Article  PubMed  CAS  Google Scholar 

  11. Seandel M, James D, Shmelkov SV et al (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    Article  PubMed  CAS  Google Scholar 

  12. Notara M, Daniels JT (2007) Biological principals and clinical potentials of limbal epithelial stem cells. Cell Tissue Res (in press)

  13. Bi Y, Ehirchiou D, Kilts TM et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  PubMed  CAS  Google Scholar 

  14. Wu SM, Fujiwara Y, Cibulsky SM et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    Article  PubMed  CAS  Google Scholar 

  15. Crane JF, Trainor PA (2006) Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol 22:267–286

    Article  PubMed  CAS  Google Scholar 

  16. Lensch MW, Daheron L, Schlaeger TM (2006) Pluripotent stem cells and their niches. Stem Cell Rev 2:185–201

    Article  PubMed  CAS  Google Scholar 

  17. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Fu X, Zhang L et al (2007) In vivo dedifferentiation of human epidermal cells. Cell Biol Int 31:1436–1441

    Article  PubMed  CAS  Google Scholar 

  19. Li A, Pouliot N, Redvers R, Kaur P (2004) Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest 113:390–400

    Article  PubMed  CAS  Google Scholar 

  20. Real C, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2006) Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev Biol 300:656–669

    Article  PubMed  CAS  Google Scholar 

  21. Spyridonidis A, Zeiser R, Follo M et al (2005) Stem cell plasticity: the debate begins to clarify. Stem Cell Rev 1:37–43

    Article  PubMed  CAS  Google Scholar 

  22. Bickenbach JR, Mackenzie IC (1984) Identification and localization of label-retaining cells in hamster epithelia. J Invest Dermatol 82:618–622

    Article  PubMed  CAS  Google Scholar 

  23. Bickenbach JR, McCutecheon J, Mackenzie IC (1986) Rate of loss of tritiated thymidine label in basal cells in mouse epithelial tissues. Cell Tissue Kinet 19:325–333

    PubMed  CAS  Google Scholar 

  24. Mackenzie IC, Bickenbach JR (1985) Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell Tissue Res 242:551–556

    Article  PubMed  CAS  Google Scholar 

  25. Morris RJ, Fischer SM, Slaga TJ (1985) Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J Invest Dermatol 84:277–281

    Article  PubMed  CAS  Google Scholar 

  26. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilose-baceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  PubMed  CAS  Google Scholar 

  27. Braun KM, Niemann C, Jensen UB et al (2003) Manipulation of stem cell proliferation and line-age commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130:5241–5255

    Article  PubMed  CAS  Google Scholar 

  28. Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119:391–393

    Article  PubMed  CAS  Google Scholar 

  29. Tiede S, Kloepper JE, Bodò E et al (2007) Hair follicle stem cells: walking the maze. Eur J Cell Biol 86:355–376

    Article  PubMed  CAS  Google Scholar 

  30. Oshima H, Rochat A, Kedzia C et al (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245

    Article  PubMed  CAS  Google Scholar 

  31. Lyle S, Christofidou-Solomidou M, Liu Y et al (1999) Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J Investig Dermatol Symp Proc 4:296–301

    Article  PubMed  CAS  Google Scholar 

  32. Trempus CS, Morris RJ, Bortner CD et al (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120:501–511

    Article  PubMed  CAS  Google Scholar 

  33. Wilson C, Cotsarelis G, Wei ZG et al (1994) Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation 55:127–136

    Article  PubMed  CAS  Google Scholar 

  34. Blanpain C, Lowry WE, Geoghegan A et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  PubMed  CAS  Google Scholar 

  35. Lyle S, Christofidou-Solomidou M, Liu Y et al (1998) The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci 111:3179–3188

    PubMed  CAS  Google Scholar 

  36. Morris RJ, Liu Y, Marles L et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417

    Article  PubMed  CAS  Google Scholar 

  37. Tumbar T, Guasch G, Greco V et al (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363

    Article  PubMed  CAS  Google Scholar 

  38. Fuchs E (2007) Scratching the surface of skin development. Nature 445:834–842

    Article  PubMed  CAS  Google Scholar 

  39. Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9:855–861

    Article  PubMed  CAS  Google Scholar 

  40. Ito M, Liu Y, Yang Z et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  PubMed  CAS  Google Scholar 

  41. Levy V, Lindon C, Zheng Y et al (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21:1358–1366

    Article  PubMed  CAS  Google Scholar 

  42. Ito M, Yang Z, Andl T et al (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447:316–320

    Article  PubMed  CAS  Google Scholar 

  43. Ito M, Kizawa K, Hamada K, Cotsarelis G (2004) Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72:548–557

    Article  PubMed  Google Scholar 

  44. Rochat A, Kobayashi K, Barrandon Y (1994) Location of stem cells of human hair follicles by clonal analysis. Cell 76:1063–1073

    Article  PubMed  CAS  Google Scholar 

  45. Roh C, Tao Q, Photopoulos C, Lyle S (2005) In vitro differences between keratinocyte stem cells and transit-amplifying cells of the human hair follicle. J Invest Dermatol 125:1099–1105

    Article  PubMed  CAS  Google Scholar 

  46. Yang JS, Lavker RM, Sun TT (1993) Upper human hair follicle contains a subpopulation of keratinocytes with superior in vitro proliferative potential. J Invest Dermatol 101:652–659

    Article  PubMed  CAS  Google Scholar 

  47. Nijhof JG, Braun KM, Giangreco A et al (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133:3027–3037

    Article  PubMed  CAS  Google Scholar 

  48. Whitbread LA, Powell BC (1998) Expression of the intermediate filament keratin gene, K15, in the basal cell layers of epithelia and the hair follicle. Exp Cell Res 244:448–459

    Article  PubMed  CAS  Google Scholar 

  49. Poblet E, Jiménez F, Godínez JM et al (2006) The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol 31:807–812

    Article  PubMed  CAS  Google Scholar 

  50. Akiyama M, Smith LT, Shimizu H (2000) Changing patterns of localization of putative stem cells in developing human hair follicles. J Invest Dermatol 114:321–327

    Article  PubMed  CAS  Google Scholar 

  51. Ohyama M, Terunuma A, Tock CL et al (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116:249–260

    Article  PubMed  CAS  Google Scholar 

  52. Horsley V, O’Carroll D, Tooze R et al (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126:597–609

    Article  PubMed  CAS  Google Scholar 

  53. Silva-Vargas V, Lo Celso C, Giangreco A et al (2005) Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 9:121–131

    Article  PubMed  CAS  Google Scholar 

  54. Amoh Y, Li L, Katsuoka K et al (2005) Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534

    Article  PubMed  CAS  Google Scholar 

  55. Amoh Y, Li L, Campillo R et al (2006) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738

    Article  CAS  Google Scholar 

  56. Mignone JL, Roig-Lopez JL, Fedtsova N et al (2007) Neural potential of a stem cell population in the hair follicle. Cell Cycle 6:2161–2170

    PubMed  CAS  Google Scholar 

  57. Hoffman RM (2006) The pluripotency of hair follicle stem cells. Cell Cycle 5:232–233

    PubMed  CAS  Google Scholar 

  58. Mackenzie IC (1970) Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature 226:653–655

    Article  PubMed  CAS  Google Scholar 

  59. Ehama R, Ishimatsu-Tsuji Y, Iriyama S et al (2007) Hair follicle regeneration using grafted rodent and human cells. J Invest Dermatol 127:2106–2115

    Article  PubMed  CAS  Google Scholar 

  60. Rhee H, Polak L, Fuchs E (2006) Lhx2 maintains stem cell character in hair follicles. Science 312:1946–1949

    Article  PubMed  CAS  Google Scholar 

  61. Clayton E, Doupé DP, Klein AM et al (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189

    Article  PubMed  CAS  Google Scholar 

  62. Jones PH, Harper S, Watt FM (1995) Stem cell patterning and fate in human epidermis. Cell 80:83–93

    Article  PubMed  CAS  Google Scholar 

  63. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    Article  PubMed  CAS  Google Scholar 

  64. Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 95:3902–3907

    Article  PubMed  CAS  Google Scholar 

  65. Webb A, Li A, Kaur P (2004) Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 72:387–395

    Article  PubMed  Google Scholar 

  66. Legg J, Jensen UB, Broad S et al (2003) Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130:6049–6063

    Article  PubMed  CAS  Google Scholar 

  67. Lowell S, Jones P, Le Roux I et al (2000) Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stemcell clusters. Curr Biol 10:491–500

    Article  PubMed  CAS  Google Scholar 

  68. Benitah SA, Frye M, Glogauer M, Watt FM (2005) Stem cell depletion through epidermal deletion of Rac1. Science 309:933–935

    Article  PubMed  CAS  Google Scholar 

  69. Michel M, Török N, Godbout MJ et al (1996) Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci 109: 1017–1028

    PubMed  CAS  Google Scholar 

  70. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  71. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    Article  PubMed  CAS  Google Scholar 

  72. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  73. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  74. Barabé F, Kennedy JA, Hope KJ, Dick JE (2007) Modeling the initiation and progression of human acute leukemia in mice. Science 316:600–604

    Article  PubMed  CAS  Google Scholar 

  75. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  76. Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  77. Kawasaki BT, Mistree T, Hurt EM et al (2007) Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364:778–782

    Article  PubMed  CAS  Google Scholar 

  78. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  79. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  80. Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4807–4815

    Article  PubMed  CAS  Google Scholar 

  81. Patrawala L, Calhoun T, Schneider-Broussard R et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  PubMed  CAS  Google Scholar 

  82. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  83. Lou H, Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26:1357–1360

    Article  PubMed  CAS  Google Scholar 

  84. Harper LJ, Piper K, Common J et al (2007) Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med 36:594–603

    Article  PubMed  Google Scholar 

  85. Nishikawa SI, Osawa M (2006) Niche for normal and cancer stem cells. Ernst Schering Found Symp Proc 5:1–12

    Article  PubMed  CAS  Google Scholar 

  86. Sánchez-García I, Vicente-Dueñas C, Cobaleda C (2007) The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 29:1269–1280

    Article  PubMed  CAS  Google Scholar 

  87. Zhang HB, Ren CP, Yang XY et al (2007) Identification of label-retaining cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tissues. Histochem Cell Biol 127:347–354

    Article  PubMed  CAS  Google Scholar 

  88. Holtz MS, Forman SJ, Bhatia R (2005) Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 19:1034–1041

    Article  PubMed  CAS  Google Scholar 

  89. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3:444–451

    Article  PubMed  CAS  Google Scholar 

  90. Bieniek R, Lazar AJ, Photopoulos C, Lyle S (2007) Sebaceous tumours contain a subpopulation of cells expressing the keratin 15 stem cell marker. Br J Dermatol 156:378–380

    Article  PubMed  CAS  Google Scholar 

  91. Kanitakis J, Bourchany D, Faure M, Claudy A (1999) Expression of the hair stem cell-specific keratin 15 in pilar tumors of the skin. Eur J Dermatol 9:363–365

    PubMed  CAS  Google Scholar 

  92. Jih DM, Lyle S, Elenitsas R et al (1999) Cytokeratin 15 expression in trichoepitheliomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. J Cutan Pathol 26:113–118

    Article  PubMed  CAS  Google Scholar 

  93. Blanpain C, Fuchs E (2007) p63: revving up epithelial stem-cell potential. Nat Cell Biol 9: 731–733

    Article  PubMed  CAS  Google Scholar 

  94. Rocco JW, Leong CO, Kuperwasser N et al (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9:45–56

    Article  PubMed  CAS  Google Scholar 

  95. Junttila MR, Puustinen P, Niemelä M et al (2007) CIP2A inhibits PP2A in human malignancies. Cell 130:51–62

    Article  PubMed  CAS  Google Scholar 

  96. Takeda H, Lyle S, Lazar AJ et al (2006) Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med 12:395–397

    Article  PubMed  CAS  Google Scholar 

  97. Niemann C, Owens DM, Hülsken J et al (2002) Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129:95–109

    PubMed  CAS  Google Scholar 

  98. Hahn H, Wicking C, Zaphiropoulous PG et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  PubMed  CAS  Google Scholar 

  99. Johnson RL, Rothman AL, Xie J et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  PubMed  CAS  Google Scholar 

  100. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated betacatenin in skin. Cell 95:605–614

    Article  PubMed  CAS  Google Scholar 

  101. Chan EF, Gat U, McNiff JM, Fuchs E (1999) A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 21:410–413

    Article  PubMed  CAS  Google Scholar 

  102. Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    Article  PubMed  CAS  Google Scholar 

  103. Boldrup L, Coates P, Gu X, Nylander K (2007) DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J Pathol 213:384–391

    Article  PubMed  CAS  Google Scholar 

  104. Bourguignon LY, Ramez M, Gilad E et al (2006) Hyaluronan-CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis. J Invest Dermatol 126:1356–1365

    Article  PubMed  CAS  Google Scholar 

  105. Oliferenko S, Kaverina I, Small JV, Huber LA (2000) Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J Cell Biol 148:1159–1164

    Article  PubMed  CAS  Google Scholar 

  106. Gómez del Pulgar T, Benitah SA, Valerón PF et al (2005) Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27:602–613

    Article  PubMed  CAS  Google Scholar 

  107. Benitah SA, Frye M, Glogauer M, Watt FM (2005) Stem cell depletion through epidermal deletion of Rac1. Science 309:933–935

    Article  PubMed  CAS  Google Scholar 

  108. Jih DM, Lyle S, Elenitsas R, Elder DE, Cotsarelis G (1999) Cytokeratin 15 expression in trichoepitheliomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. J Cutan Pathol 26:113–118

    Article  PubMed  CAS  Google Scholar 

  109. Benitah SA, Watt FM (2007) Epidermal deletion of Rac1 causes stem cell depletion, irrespective of whether deletion occurs during embryogenesis or adulthood. J Invest Dermatol 127:1555–1557

    Article  PubMed  CAS  Google Scholar 

  110. Chrostek A, Wu X, Quondamatteo F et al (2006) Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol Cell Biol 26:6957–6970

    Article  PubMed  CAS  Google Scholar 

  111. Castilho RM, Squarize CH, Patel V et al (2007) Requirement of Rac1 distinguishes follicular from interfollicular epithelial stem cells. Oncogene 26:5078–5085

    Article  PubMed  CAS  Google Scholar 

  112. Liu SY, Yen CY, Yang SC et al (2004) Overexpression of Rac-1 small GTPase binding protein in oral squamous cell carcinoma. J Oral Maxillofac Surg 62:702–707

    Article  PubMed  Google Scholar 

  113. Patel V, Rosenfeldt HM, Lyons R et al (2007) Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis 28:1145–1152

    Article  PubMed  CAS  Google Scholar 

  114. Niemann C, Owens DM, Hülsken J, Birchmeier W, Watt FM (2002) Expression of DeltaNLeft in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129:95–109

    PubMed  CAS  Google Scholar 

  115. Garzino-Demo P, Carrozzo M, Trusolino L et al (1998) Altered expression of alpha 6 integrin subunit in oral squamous cell carcinoma and oral potentially malignant lesions. Oral Oncol 34:204–210

    Article  PubMed  CAS  Google Scholar 

  116. Owens DM, Romero MR, Gardner C, Watt FM (2003) Suprabasal alpha6beta4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFbeta signalling. J Cell Sci 116:3783–3791

    Article  PubMed  CAS  Google Scholar 

  117. Kobielak K, Stokes N, de la Cruz J et al (2007) Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA 104:10063–10068

    Article  PubMed  CAS  Google Scholar 

  118. Rosenblum MD, Woodliff JE, Madsen NA et al (2005) Characterization of CD 200-receptor expression in the murine epidermis. J Invest Dermatol 125:1130–1138

    Article  PubMed  CAS  Google Scholar 

  119. Trempus CS, Morris RJ, Ehinger M et al (2007) CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 67:4173–4181

    Article  PubMed  CAS  Google Scholar 

  120. Grinnell KL, Yang B, Eckert RL, Bickenbach JR (2007) De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. J Invest Dermatol 127:372–380

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aznar Benitah.

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benitah, S.A. Epidermal stem cells in skin homeostasis and cutaneous carcinomas. Clin Transl Oncol 9, 760–766 (2007). https://doi.org/10.1007/s12094-007-0137-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0137-x

Key words

Navigation