Skip to main content

Advertisement

Log in

Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The purpose of this study is to explore the role of hypoxia on the invasion and metastasis of laryngeal carcinoma. The invasion and migration ability of laryngeal cancer SCC10A cell was detected by transwell assay. Western blot was applied to analyze the expression of EMT-related proteins. Fifty-seven samples from postoperative patients with laryngeal cancer were collected to study. Immunohistochemistry was used to examine the expression of GLUT-1 and EMT-related proteins (Vim, E-cad, N-cad) in normal laryngeal squamous epithelial tissue, laryngeal cancer adjacent tissues and laryngeal squamous cell carcinoma tissues. Hypoxia promoted laryngeal cancer cell invasion and migration. Hypoxia also enhanced the expression of GLUT-1, vimentin and N-cad, which exist statistically significant correlation with the clinical staging and lymph node metastases (P < 0.05). The expression of GLUT-1 is positively correlated with Vim and N-cad expression in laryngeal squamous cell carcinoma tissues, but negatively correlated with E-cad expression. The patient survival rate with the positive expression of GLUT-1, Vim and N-cad becomes much shorter compared with those with negative expression of GLUT-1, Vim and N-cad (P < 0.05). Hypoxia promoted laryngeal cancer cell invasion and migration via EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xia C-X, Zhu Q, Zhao H-X, Yan F, Li S-L, Zhang S-M. Usefulness of ultrasonography in assessment of laryngeal carcinoma. Br J Radiol. 2013;86(1030):20130343.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Markou K, Christoforidou A, Karasmanis I, Tsiropoulos G, Triaridis S, Constantinidis I, Vital V, Nikolaou A. Laryngeal cancer: epidemiological data from Νorthern Greece and review of the literature. Hippokratia. 2013;17(4):313–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Dan Yu, Jin C, Liu Y, Yang J, Zhao Y, Wang H, Zhao X, Cheng J, Liu X, Liu C. Clinical implications of cancer stem cell-like side population cells in human laryngeal cancer. Tumour Biol. 2013;34(6):3603–10.

    Article  Google Scholar 

  4. Harris AL. Hypoxia—a key regulatory factor in tumor growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  5. Tsaiand JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–206.

    Article  Google Scholar 

  6. Mendichovszky I, Jackson A. Imaging hypoxia in gliomas. Br J Radiol. 2011;84(Spec Iss 2):S145–58.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ponnusamy MP, Seshacharyulu P, Lakshmanan I, Vaz AP, Chugh S, Batra SK. Emerging role of mucins in epithelial to mesenchymal transition. Curr Cancer Drug Targets. 2013;13(9):945–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Steinestel K, Eder S, Schrader AJ, Steinestel J. Clinical significance of epithelial–mesenchymal transition. Clin Transl Med. 2014;3:17.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148(4):779–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Qian X, Anzovino A, Kim S, Suyama K, Yao J, Hulit J, Agiostratidou G, Chandiramani N, McDaid HM, Nagi C, Cohen HW, Phillips GR, Norton L, Hazan RB. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene. 2014;33(26):3411–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chung S, Yao J, Suyama K, Bajaj S, Qian X, Loudig OD, Eugenin EA, Phillips GR, Hazan RB. N-cadherin regulates mammary tumor cell migration through Akt3 suppression. Oncogene. 2013;32(4):422–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Su Y, Li J, Witkiewicz AK, Brennan D, Neill T, Talarico J, Radice GL. N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene. 2012;31(41):4484–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 2011;13(3):R59.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ulirsch J, Fan C, Knafl G, Wu MJ, Coleman B, Perou CM, Swift-Scanlan T. Vimentin DNA methylation predicts survival in breast cancer. Breast Cancer Res Treat. 2013;. doi:10.1007/s10549-012-2353-5.

    PubMed Central  PubMed  Google Scholar 

  15. Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP. Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell. 2011;22(14):2423–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Reinhold WC, Reimers MA, Lorenzi P, Ho J, Shankavaram UT, Ziegler MS, Bussey KJ, Nishizuka S, Ikediobi O, Pommier YG, Weinstein JN. Multifactorial regulation of E-cadherin expression: an integrative study. Mol Cancer Ther. 2010;9(1):1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zuo J-h, Zhu W, Li Mao-Yu, Li X-H, Yi H, Zeng G-Q, Wan X-X, He Q-Y, Li J-H, Jia-Quan Q, Xiao Z-Q. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem. 2011;112:2508–17.

    Article  CAS  PubMed  Google Scholar 

  18. Chou CC, Chuang HC, Salunke SB, Kulp SK, Chen CS. A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial–mesenchymal transition in cancer cells. Oncotarget. 2015;6(10):8271–85.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lu X, Kang Y. Hypoxia and hypoxia-inducible factors:master regulators of metastasis. Clin Cancer Res. 2010;16:5928–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci. 2012;19:102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huang X, Zuo J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim Biophys Sin (Shanghai). 2014;46(3):220–32.

    Article  CAS  Google Scholar 

  24. Starska K, Forma E, Jóźwiak P, Bryś M, Lewy-Trenda I, Brzezińska-Błaszczyk E, Krześlak A. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis. Tumour Biol. 2015;36(4):2309–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cui Y, Nadiminty N, Liu C, Lou W, Schwartz CT, Gao AC. Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells. Endocr Relat Cancer. 2014;21:435–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rashmi R, DeSelm C, Helms C, Bowcock A, Rogers BE, Rader J, et al. AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake. PLoS ONE. 2014;9:e92948. doi:10.1371/journal.pone.0092948.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, et al. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun. 2013;4:2935.

    PubMed Central  PubMed  Google Scholar 

  28. Chen XH, Bao YY, Zhou SH, Wang QY, Wei Y, Fan J. Glucose transporter-1 expression in CD133 + laryngeal carcinoma Hep-2 cells. Mol Med Rep. 2013;8:1695–700.

    CAS  PubMed  Google Scholar 

  29. Eckert AW, Lautner MH, Schütze A, Taubert H, Schubert J, Bilkenroth U. Coexpression of hypoxia-inducible factor-1α and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology. 2011;58:1136–47.

    Article  PubMed  Google Scholar 

  30. Zuo J, Ishikawa T, Boutros S, Xiao Z, Humtsoe JO, Kramer RH. Bcl-2 over-expression induces a partial epithelial to mesenchymal transition and promotes squamous carcinoma cell invasion and metastasis. Mol Cancer Res. 2010;8(2):170–82.

    Article  CAS  PubMed  Google Scholar 

  31. Zuo J, Wen M, Lei M, Peng X, Yang X, Liu Z. MiR-210 links hypoxia with cell proliferation regulation in human laryngocarcinoma cancer. J Cell Biochem. 2015;116(6):1039–49.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan TZ, Zhang HH, Tang QF, Zhang Q, Li J, Liang Y, Huang LJ, Zheng RH, Deng J, Zhang XP. Prognostic value of kisspeptin expression in nasopharyngeal carcinoma. Laryngoscope. 2014;124(5):E167–74.

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Wang J, Gao L, Gong L. Expression of paxillin in laryngeal squamous cell carcinoma and its prognostic value. Int J Clin Exp Pathol. 2015;8(8):9232–9.

    PubMed Central  PubMed  Google Scholar 

  34. Tu XP, Qiu QH, Chen LS, Luo XN, Lu ZM, Zhang SY, Chen SH. Preoperative neutrophil-to-lymphocyte ratio is an independent prognostic marker in patients with laryngeal squamous cell carcinoma. BMC Cancer. 2015;15(743):1–7.

    CAS  Google Scholar 

  35. Xie J, Li D, Chen X, Wang F, Dong P. Expression and significance of hypoxia-inducible factor-1α and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells. Oncol Lett. 2013;6(1):232–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Abdou AG, Eldien MM. Elsakka D.GLUT-1 expression in cutaneous basal and squamous cell carcinomas. Int J Surg Pathol. 2015;23(6):447–53.

    Article  PubMed  Google Scholar 

  37. Huang XQ, Chen X, Xie XX, Zhou Q, Li K, Li S, Shen LF, Su J. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(4):1651–66.

    PubMed Central  PubMed  Google Scholar 

  38. Eckert AW, Lautner MH, Taubert H, Schubert J, Bilkenroth U. Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients. Oncol Rep. 2008;20:1381–5.

    CAS  PubMed  Google Scholar 

  39. Deron P, Vermeersch H, Mees G, Vangestel C, Pauwels P, Van de Wiele C. Expression and prognostic value of glucose transporters and hexokinases in tonsil and mobile tongue squamous cell carcinoma. Histol Histopathol. 2011;26:1165–72.

    CAS  PubMed  Google Scholar 

  40. Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, Mizuno Y, Yokoi T, Yamada S. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep. 2011;25:1227–33.

    PubMed  Google Scholar 

  41. Deron P, Vangestel C, Goethals I, De Potter A, Peeters M, Vermeersch H, Van de Wiele C. FDG uptake in primary squamous cell carcinoma of the head and neck. The relationship between overexpression of glucose transporters and hexokinases, tumour proliferation and apoptosis. Nuklearmedizin. 2011;50:15–21.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, Dong J, Qian C. Hypoxia induces epithelial–mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer. 2013;13:108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mayer A, Höckel M, Schlischewsky N, Schmidberger H, Horn LC, Vaupel P. Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix. Br J Cancer. 2013;108(2):402–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Talbot LJ, Bhattacharya SD, Kuo PC. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol. 2012;3(2):117–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Huang SG, Zhang LL, Niu Q, Xiang GM, Liu LL, Jiang DN, Liu F, Li Y, Pu X. Hypoxia promotes epithelial–mesenchymal transition of hepatocellular carcinoma cells via inducing GLIPR-2 expression. PLoS ONE. 2013;8(10):e77497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305.

    Article  CAS  PubMed  Google Scholar 

  48. Choi JY, Jang YS, Min SY, Song JY. Overexpression of MMP-9 and HIF-1alpha in breast cancer cells under hypoxic conditions. J Breast Cancer. 2011;14:88–95.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kaidi A, Williams AC, Paraskeva C. Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. 2007;9:210–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, Wu Y, Yan Q, Liu S, Wang J. HIF-1α promotes epithelial–mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE. 2015;10(6):e0129603.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (81272960), Key Research Program from Science and Technology Department of Hunan Province, China (2013WK2010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyang Luo or Gebo Wen.

Ethics declarations

Conflict of interest

None.

Additional information

Jianhong Zuo and Juan Wen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, J., Wen, J., Lei, M. et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT. Med Oncol 33, 15 (2016). https://doi.org/10.1007/s12032-015-0716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0716-6

Keywords

Navigation