Skip to main content
Log in

Activation of Wnt/β-catenin Pathway by Exogenous Wnt1 Protects SH-SY5Y Cells Against 6-Hydroxydopamine Toxicity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Wnt1, initially described as a modulator of embryonic development, has recently been discovered to exert cytoprotective effects in cellular models of several diseases, including Parkinson's disease (PD). We, therefore, examined the neuroprotective effects of exogenous Wnt1 on dopaminergic SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA). Here, we show that 10–500 μM 6-OHDA treatment decreased cell viability and increased lactate dehydrogenase (LDH) leakage. SH-SY5Y cells treated with 100 μM 6-OHDA for 24 h showed reduced Wnt/β-catenin activity, decreased mitochondrial transmembrane potential, elevated levels of reactive oxidative species (ROS) and phosphatidylserine (PS) extraversion, increased levels of Chop and Bip/GRP78 and reduced level of p-Akt (Ser473). In contrast, exogenous Wnt1 attenuated 6-OHDA-induced changes. These results suggest that activation of the Wnt/β-catenin pathway by exogenous Wnt1 protects against 6-OHDA-induced changes by restoring mitochondria and endoplasmic reticulum (ER) function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida M, Ambrogini E et al (2009) Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem 284:27438–27448

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Bai Y, Meng Z et al (2009) An Ang1–Tie2–PI3K axis in neural progenitor cells initiates survival responses against oxygen and glucose deprivation. Neuroscience 160:371–381

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Torch S, Nissou MF, Benabid AL, Verna JM (2000) Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 283:193–196

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco G, Wagner J et al (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 100:12747–12752

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco G, Rawal N et al (2004) GSK-3beta inhibition/beta-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J Cell Sci 117:5731–5737

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Bower KA et al (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Chen JR, Lazarenko OP et al (2010) A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/beta-catenin signaling. J Bone Miner Res 25:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Kang JQ et al (2002) Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106:2973–2979

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Li F et al (2007) Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways. Cell Signal 19:1150–1162

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Shang YC et al (2010) Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways. Oxidative Med Cell Longev 3:153–165

    Article  Google Scholar 

  • Chong ZZ, Hou J et al (2011) EPO relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-catenin to foster vascular integrity during experimental diabetes. Curr Neurovasc Res 8:103–120

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari GV, Chacon MA et al (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry 8:195–208

    Article  PubMed  Google Scholar 

  • Dexter DT, Carayon A et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    Article  PubMed  Google Scholar 

  • Dong J, Song N et al (2009) Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. J Mol Neurosci 37:182–189

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Liu D et al (2008) Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer 44:2680–2688

    Article  PubMed  CAS  Google Scholar 

  • Hwang CK, Chun HS (2012) Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons. Biosci Biotechnol Biochem 76:536–543

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Soda M et al (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Farley NN, Travkina T et al (2006) Cumulative activation of akt and consequent inhibition of glycogen synthase kinase-3 by brain-derived neurotrophic factor and insulin-like growth factor-1 in cultured hippocampal neurons. J Pharmacol Exp Ther 316:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Koo HJ, Piao Y et al (2012) Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals

  • L'Episcopo F, Serapide MF et al (2011a) A Wnt1 regulated Frizzled-1/beta-catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6:49

    Article  PubMed  Google Scholar 

  • L'Episcopo F, Tirolo C et al (2011b) Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiol Dis 41:508–527

    Article  PubMed  Google Scholar 

  • Li F, Chong ZZ et al (2006) Winding through the WNT pathway during cellular development and demise. Histol Histopathol 21:103–124

    PubMed  CAS  Google Scholar 

  • Li Y, Luo F et al (2011) Knockdown of glycogen synthase kinase 3 beta attenuates 6-hydroxydopamine-induced apoptosis in SH-SY5Y cells. Neurosci Lett 487:41–46

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Cheng M et al (2009) Norrin attenuates protease-mediated death of transformed retinal ganglion cells. Mol Vis 15:26–37

    PubMed  CAS  Google Scholar 

  • Liu J, Ding X et al (2011) Enhancement of canonical Wnt/beta-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One 6:e27496

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhang HM et al (2012) The immunity-related GTPase Irgm3 relieves endoplasmic reticulum stress response during coxsackievirus B3 infection via a PI3K/Akt dependent pathway. Cell Microbiol 14:133–146

    Article  PubMed  CAS  Google Scholar 

  • Luo F, Wei L et al (2012) HtrA2/Omi is involved in 6-OHDA-induced endoplasmic reticulum stress in SH-SY5Y cells. J Mol Neurosci 47:120–127

    Article  PubMed  CAS  Google Scholar 

  • Mazemondet O, Hubner R et al (2011) Quantitative and kinetic profile of Wnt/beta-catenin signaling components during human neural progenitor cell differentiation. Cell Mol Biol Lett 16:515–538

    Article  PubMed  CAS  Google Scholar 

  • McCullough KD, Martindale JL et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Nusse R (1999) WNT targets. Repression and activation. Trends Genet 15:1–3

    Article  PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL et al (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  • Rao RV, Peel A et al (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Blanco J, Martin V et al (2008) Intracellular signaling pathways involved in post-mitotic dopaminergic PC12 cell death induced by 6-hydroxydopamine. J Neurochem 107:127–140

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson's disease pathogenesis. Parkinsons Dis 2011:159160

    PubMed  Google Scholar 

  • Schapira AH, Cooper JM et al (1989) Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  • Sklepkiewicz P, Schermuly RT et al (2011) Glycogen synthase kinase 3beta contributes to proliferation of arterial smooth muscle cells in pulmonary hypertension. PLoS One 6:e18883

    Article  PubMed  CAS  Google Scholar 

  • Song L, De Sarno P et al (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277:44701–44708

    Article  PubMed  CAS  Google Scholar 

  • Soto-Otero R, Mendez-Alvarez E et al (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem 74:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Deng Y et al (1994) Uptake of a neurotoxin-candidate, (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system. J Neural Transm Gen Sect 98:107–118

    Article  PubMed  CAS  Google Scholar 

  • Tiong CX, Lu M et al (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161:467–480

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y (2002) Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep 22:47–58

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1:E209–E216

    Article  PubMed  CAS  Google Scholar 

  • Vidya Priyadarsini R, Senthil Murugan R et al (2012) Aberrant activation of Wnt/beta-catenin signaling pathway contributes to the sequential progression of DMBA-induced HBP carcinomas. Oral Oncol 48:33–39

    Article  PubMed  Google Scholar 

  • Weinreb O, Amit T et al (2006) Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transm Suppl 70:457–465

    Google Scholar 

  • Yamaguchi TP (2001) Heads or tails: Wnts and anterior-posterior patterning. Curr Biol 11:R713–R724

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Cao X et al (2010) DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis 15:105–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Walsh (Harvard Medical School) for careful reading and correction of this manuscript. This work was supported by “863” project (2007AA02Z460), “973” project (2010AB973Z531) from the Ministry of Science and Technology of the People's Republic of China, grants from Nature Science Foundation of China (81071032, 81271428), the Guangzhou Foundation for Scientific and Technological Project, China (grant no. 2012J4300061), the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant no. 20100171110056), and a grant supported by a key project (ZDXM080214) from Hainan Provincial Science and Technology Department.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaomin Li or Pingyi Xu.

Additional information

Lei Wei, Congcong Sun, Guofei Li, and Ming Lei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., Sun, C., Lei, M. et al. Activation of Wnt/β-catenin Pathway by Exogenous Wnt1 Protects SH-SY5Y Cells Against 6-Hydroxydopamine Toxicity. J Mol Neurosci 49, 105–115 (2013). https://doi.org/10.1007/s12031-012-9900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9900-8

Keywords

Navigation