Skip to main content

Advertisement

Log in

Basement Membrane Matrix (BME) has Multiple Uses with Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The utilization of basement membrane matrix has helped to overcome many of the obstacles associated with stem cell research. Initially, there were several problems with investigating stem cells, including difficult extraction from tissues, the need for feeder layers, poor survival, minimal proliferation, limited differentiation in vitro, and inadequate survival when injected or transplanted in vivo. Given that the basement membrane is the first extracellular matrix that is produced by the developing embryo, it was quickly identified as an important factor for modulating stem cell behavior, and since then, basement membrane extract (BME) has been successfully employed in numerous methods as a substratum in vitro and as a bioactive support in vivo to overcome many of these problems. A thin BME coating is sufficient to maintain an undifferentiated phenotype during embryonic stem cell expansion, while a thick BME hydrogel may be employed to induce stem cell differentiation. BME also promotes stem cell survival for in vivo applications and provides a physiological environment for evaluating stem cell co-culture with other cell types. The present article provides a concise review of current methodologies utilizing BME for stem cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu, T., Wan, Y. J., Chung, A. E., & Damjanov, I. (1983). Immunohistochemical localization of entactin and laminin in mouse embryos and fetuses. Developmental Biology, 100, 496–505.

    Article  PubMed  CAS  Google Scholar 

  2. Benton, G., George, J., Kleinman, H. K., & Arnaoutova, I. (2009). Advancing science and technology via 3D culture on basement membrane matrix. Journal of Cellular Physiology, 221, 18–25.

    Article  PubMed  CAS  Google Scholar 

  3. Hughes, C. S., Postovit, L. M., & Lajoie, G. A. (2010). Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteonomics, 10, 1886–1890.

    Article  CAS  Google Scholar 

  4. Kreugel, J., & Miosge, N. (2010). Basement membrane components are key players in specialized extracellular matrices. Cellular and Molecular Life Sciences, 67, 2879–2895.

    Article  Google Scholar 

  5. Yurchenco, P. D., & Patton, B. L. (2009). Developmental and pathological mechanisms of basement membrane assembley. Current Pharma Research, 15, 1277–1294.

    Article  CAS  Google Scholar 

  6. Bilozur, M. E., & Hay, E. D. (1988). Neural crest cell migration in 3 dimensional matrix utilizes laminin, fibronectin or collagen. Developments in Biologicals, 125, 19–33.

    Article  CAS  Google Scholar 

  7. Xu, C., Inokuma, M. S., Denham, J., et al. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 19, 971–974.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, S., & Talbot, P. (2010). Methods for culturing mouse and human embryonic stem cells. Methods in Molecular Biology, 690, 31–56.

    Article  Google Scholar 

  9. Xu, R. H., Peck, R. M., Li, D. S., et al. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES. Nature Methods, 2, 185–190.

    Article  PubMed  CAS  Google Scholar 

  10. Tsai, Z. Y., Singh, S., Yu, S. L., et al. (2010). A feeder-free culture using autogeneic conditioned medium for undifferentiated growth of human embryonic stem cells: comparative expression profiles of mRNAs, microRNAs and proteins among different feeders and conditioned medium. BMC Cell Biology, 11, 76.

    Article  PubMed  Google Scholar 

  11. Tsutsui, H., Vlalmehr, B., Hindoyan, A., Qiao, R., Ding, X., Guo, S., et al. (2011). An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nature Communications, 2, 167.

    Article  PubMed  Google Scholar 

  12. Li, J., Bardy, J., Yap, L. Y., Chen, A., Nurcombe, V., Cool, S. M., et al. (2010). Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 5, FA132–FA142.

    Article  PubMed  Google Scholar 

  13. Braam, S. R., Denning, C., van den Brink, S., et al. (2008). Improved genetic manipulation of human embryonic stem cells. Nature Methods, 5, 389–392.

    Article  PubMed  CAS  Google Scholar 

  14. Villa-Diaz, L. G., Garcia-Perez, J. L., & Krebsbach, P. H. (2010). Enhanced transfection efficiency of human embryonic stems by the incorporation of the DNA liposomes in extracellular matrix. Stem Cells and Development, 19, 1949–1957.

    Article  PubMed  CAS  Google Scholar 

  15. Lin, T., Ambasudhan, R., Yuan, X., et al. (2009). A chemical platform for improved induction of human iPSCs. Nature Methods, 6, 805–808.

    Article  PubMed  CAS  Google Scholar 

  16. Fong, C. Y., Chak, L. L., Subramanian, A., et al. (2009). A three dimensional anchorage independent in vitro system for the prolonged growth of embryoid bodies to study cancer cell behavior and anticancer agents. Stem Cell Reviews and Reports, 5, 410–419.

    Article  PubMed  CAS  Google Scholar 

  17. Sato, T., Vries, R. G., Snippert, H. J., et al. (2009). Single Lgr5 stem cells build crypt-like villus structures in vitro without a mesenchymal niche. Nature, 459, 262–265.

    Article  PubMed  CAS  Google Scholar 

  18. Mukai, N., Akahori, T., Komaki, M., et al. (2008). A comparison of the tube forming potentials of early and late endothelial progenitor cells. Experimental Cell Research, 314, 430–440.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, P., Moudgill, N., Hager, E., et al. (2011). Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells and Development, 20, 977–988.

    Google Scholar 

  20. Rahnemai-Azar, A., D’Ippolito, G., Gomez, L. A., et al. (2010). Human marrow-iisolated adult multilineage-inducible (MAIMI) cells protect against peripheral vascular ischemia in a mouse model. Cytotherapy, 13, 179–192.

    Article  PubMed  Google Scholar 

  21. Erbs, S., Beck, E. B., Linke, A., et al. (2010). High-dose rosuvastatin in chronic heart failure promotes vasculogensis, corrects endothelial function, and improves cardiac remodeling-Results from a randomized, double blind, and placebo –controlled study. International Journal of Cardiology, 146, 56–63.

    Article  PubMed  Google Scholar 

  22. Sakai, H., Tagawa, Y. I., Tamai, M., et al. (2010). Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells. Biochemical and Biophysical Research Communications, 403, 298–304.

    Article  PubMed  CAS  Google Scholar 

  23. Pancholi, N., Patel, J., Gudehithlu, K. P., et al. (2010). Culture of omentum-induced regenerating liver yields hepatocyte-committed stem cells. Translational Research, 156, 358–368.

    Article  PubMed  CAS  Google Scholar 

  24. Qi, S., Zheng, J., Zhu, H., et al. (2010). Identification of neuroblastoma stem cells by characterization of side populations of cells in the human neuroblastoma SK-N-SH cell line. Journal of Pediatric Surgery, 45, 2305–2311.

    Article  PubMed  Google Scholar 

  25. Philp, D., Chen, S. S., Fitzgerald, W., et al. (2005). Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells, 23, 288–296.

    Article  PubMed  Google Scholar 

  26. Bouras, T., Pal, B., Vaillant, F., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3, 429–441.

    Article  PubMed  CAS  Google Scholar 

  27. McQualter, J. L., Yuen, K., Williams, B., & Bertoncello, I. (2010). Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proceedings of the National Academy of Sciences of the United States of America, 107, 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  28. Stewart, M. H., Bosse, M., Chadwick, K., et al. (2006). Clonal isolation of HESCs revealheterogenitiy with the pluripotent stem cell compartment. Nature Methods, 3, 807–815.

    Article  PubMed  CAS  Google Scholar 

  29. Yeung, T. M., Gandhi, S. C., Wilding, J. L., et al. (2010). Cancer stem cells from colorectal cancer-derived cell lines. Proceedings of the National Academy of Sciences of the United States of America, 107, 3722–3727.

    Article  PubMed  CAS  Google Scholar 

  30. Shyu, J. F., Wang, H. S., Shyr, Y. M., et al. (2011). Alleviation of hyperglycemia in diabetic rats by intraportal injection of nsulin-producing cells generated from surgically resected human pancreatic tissue. Journal of Endocrinology, 208, 233–234.

    PubMed  CAS  Google Scholar 

  31. Calcagno, S. M., Salicido, C. D., Gillet, J. P., Wu, C. P., Fostel, J. M., Mumau, M. D., et al. (2010). Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. Journal of the National Cancer Institute, 102, 1637–1652.

    Article  PubMed  CAS  Google Scholar 

  32. Albini, A., & Noonan, D. M. (2010). The ‘chemoinvasion’ assay, 25 years and still going strong: use of reconstituted basement membranes to study cell invasion and angiogenesis. Current Opinion in Cell Biology, 22, 677–689.

    Article  PubMed  CAS  Google Scholar 

  33. Inoue, A., Takahashi, H., Harada, H., Kohno, S., et al. (2010). Cancer stem –like cells of glioblastomacharactertistically express MMP-13 and display highly invasive activity. International Journal of Oncology, 37, 1121–1131.

    PubMed  CAS  Google Scholar 

  34. Burdick, J. A., & Vunjak-Novakovic, G. (2009). Engineered microenvironments for controlled stem cell differentiation. Tissue Engineering. Part A, 15, 205–219.

    Article  PubMed  CAS  Google Scholar 

  35. Hatzisavrou, T., Micallef, S. J., Ng, E. S., et al. (2009). ErythRED, a hESC line enabling identification of erythroid cells. Nature Methods, 6, 659–662.

    Article  Google Scholar 

  36. Levenberg, S., Huang, N. F., Lavik, E., et al. (2003). Differentiation of human embryonic stem cells on three dimensional polymer scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 100, 12741–12746.

    Article  PubMed  CAS  Google Scholar 

  37. Lesman, A., Habib, M., Caspi, O., et al. (2010). Transplantation of tissue-engineered human vascularized cardiac muscle. Tissue Engineering. Part A, 16, 115–125.

    Article  PubMed  CAS  Google Scholar 

  38. Caspi, O., Lesman, A., Basevitch, Y., et al. (2007). Tissue engineering of vascularized cardiac muscles from human embryonic stem cells. Circulation Research, 100, 263–272.

    Article  PubMed  CAS  Google Scholar 

  39. Jin, K., Mao, X., Xie, L., et al. (2010). Delayed transplantation of human neural precursor cells improve outcome from focal ischemia in aged rats. Aging Cell, 29, 1076–1083.

    Article  Google Scholar 

  40. Ou, L., Li, W., Zhang, Y., et al. (2010). Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. Journal of Cellular and Molecular Medicine, 15, 1310–1318.

    Google Scholar 

  41. Arnaoutova, I., George, J., Kleinman, H. K., & Benton, G. (2009). The endothelial cell tube formation assay on basement membrane turns 20: state of the science and art. Angiogenesis, 12, 267–274.

    Article  PubMed  Google Scholar 

  42. Guo, S., Chang, Y., Ma, Y., & Yang, X. (2010). Endothelial progenitor cells derived from CD34+ cells form cooperative vascular networks. Cellular Physiology and Biochemistry, 26, 679–688.

    Article  PubMed  Google Scholar 

  43. Duffy, G. P., Ahsan, T., OBrien, T., et al. (2009). Bone marrow-derived mesenchymal stem cells promote angiogenic processes in a time- and dose-dependent manner in vitro. Tissue Engineering. Part A, 15, 2459–2470.

    Article  PubMed  CAS  Google Scholar 

  44. Aguirre, A., Planell, J. A., & Engel, E. (2010). Dynamics of bone marrow-derived endothelial progenitor cells/mesenchymal stem cell interaction in co-culture and it implication in angiogenesis. Biochemical and Biophysical Research Communications, 400, 284–291.

    Article  PubMed  CAS  Google Scholar 

  45. Bellik, L., Musilli, C., Vinci, M. C., et al. (2008). Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype. Experimental Cell Research, 314, 2965–2974.

    Article  PubMed  CAS  Google Scholar 

  46. Compte, M., Alonso-Camino, V., Santos-Valle, P., et al. (2010). Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Therapy, 17, 745–751.

    Article  PubMed  CAS  Google Scholar 

  47. Sasser, A. K., Mundy, B. L., Smith, K. M., et al. (2007). Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell-line dependent manner when evaluated in 3D tumor environments. Cancer Letters, 254, 255–264.

    Article  PubMed  CAS  Google Scholar 

  48. Foubert, P., Matrone, G., Souttou, B., et al. (2008). Coadministration of endothelial and smooth muscle progenitor cells enhances the efficacy of proangiogenic cell-based therapy. Circulation Research, 103, 751–760.

    Article  PubMed  CAS  Google Scholar 

  49. Koob, S., Torio-Padron, N., Stark, G. B., et al. (2011). Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Engineering. Part A, 17, 311–321.

    Article  PubMed  Google Scholar 

  50. Noel, D., De Pauw-Gillet, M. C., Purnell, G., et al. (1993). Enhancement of tumorigenticity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. British Journal of Cancer, 68, 909–915.

    Article  PubMed  CAS  Google Scholar 

  51. Fedorovich, N. E., Haverslag, R. T., Dhert, W. J., & Alblas, J. (2010). The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogenous constructs. Tissue Engineering. Part A, 16, 2355–2367.

    Article  PubMed  CAS  Google Scholar 

  52. Alonso-Camino, V., Santos-Valle, P., Ispizua, M. C., et al. (2009). Engineered human tumor xenografts with functional human vascular networks. Microvascular Research, 81, 18–25.

    Article  Google Scholar 

  53. Desbordes, S. C., Placantonakais, D. G., Ciro, A., et al. (2008). High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell, 2, 602–612.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Benton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnaoutova, I., George, J., Kleinman, H.K. et al. Basement Membrane Matrix (BME) has Multiple Uses with Stem Cells. Stem Cell Rev and Rep 8, 163–169 (2012). https://doi.org/10.1007/s12015-011-9278-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9278-y

Keywords

Navigation