Skip to main content

Advertisement

Log in

MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Elevated level of homocysteine (Hcy) called hyperhomocysteinemia (HHcy) is one of the major risk factors for chronic heart failure. Although the role of Hcy in cardiac remodeling is documented, the regulatory mechanism involved therein is still nebulous. MicroRNAs (miRNAs) and dicer have been implicated in regulation of cardiovascular diseases. Dicer is the only known enzyme involved in miRNA maturation. We investigated the involvement of dicer and miRNA in Hcy-induced cardiac remodeling. HL-1 cardiomyocytes were cultured in different doses of Hcy. Total RNA was isolated and RT-PCR and real-time PCR was performed for dicer, MMP-2,-9, TIMP-1,-3, and NOX-4. MiRNA microarray was used for analyzing the differential expression of miRNAs. Individual miRNA assay was also done. Western blotting was used to assess the MMP-9 expression in HHcy cardiomyocytes. The RT-PCR results suggest that dicer expression is enhanced in HHcy cardiomyocytes suggesting its involvement in cardiac remodeling caused due to high dose of Hcy. On the other hand, high dose of Hcy increased NOX-4 expression, a marker for oxidative stress. Additionally, HHcy cardiomyocytes showed elevated levels of MMP-2,-9 and TIMP-1,-3, and reduced expression of TIMP-4, suggesting cardiac remodeling due to oxidative stress. The miRNA microarray assay revealed differential expression of 11 miRNAs and among them miR-188 show dramatic downregulation. These findings suggest that dicer and miRNAs especially miR-188 are involved in Hcy-induced cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Hcy :

Homocysteine

HHcy:

Hyperhomocysteinemia

MMP:

Matrix metalloproteinase

TIMP:

Tissue inhibitor of metalloproteinase

NOX:

Nicotinamide adenine diphosphate oxidase

CHF:

Congestive heart failure

CVD:

cardiovascular diseases

miR/miRNA:

microRNA

RT-PCR:

Reverse transcription polymerase chain reaction

References

  1. Herrmann, W., Herrmann, M., & Obeid, R. (2007). Hyperhomocysteinaemia: A critical review of old and new aspects. Current Drug Metabolism, 8(1), 17–31.

    Article  PubMed  CAS  Google Scholar 

  2. Martin-Herrero, F., Jimenez-Candil, J., Martin-Moreiras, J., Pabon, P., Cruz-Gonzalez, I., Martin-Garcia, A., et al. (2008). Homocysteine, cause or consequence? International Journal of Cardiology, 129(2), 276–277.

    Article  Google Scholar 

  3. Refsum, H., Smith, A. D., Ueland, P. M., Nexo, E., Clarke, R., McPartlin, J., et al. (2004). Facts and recommendations about total homocysteine determinations: An expert opinion. Clinical Chemistry, 50(1), 3–32.

    Article  PubMed  CAS  Google Scholar 

  4. Wierzbicki, A. S. (2007). Homocysteine and cardiovascular disease: A review of the evidence. Diabetes & Vascular Disease Research, 4(2), 143–150.

    Article  Google Scholar 

  5. Jhee, K. H., & Kruger, W. D. (2005). The role of cystathionine beta-synthase in homocysteine metabolism. Antioxidants Redox Signaling, 7(5–6), 813–822.

    PubMed  CAS  Google Scholar 

  6. Graham, I. M., Daly, L. E., Refsum, H. M., Robinson, K., Brattstrom, L. E., Ueland, P. M., et al. (1997). Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA, 277(22), 1775–1781.

    Article  PubMed  CAS  Google Scholar 

  7. Blacher, J., Demuth, K., Guerin, A. P., Vadez, C., Moatti, N., Safar, M. E., et al. (1999). Association between plasma homocysteine concentrations and cardiac hypertrophy in end-stage renal disease. Journal of Nephrology, 12(4), 248–255.

    PubMed  CAS  Google Scholar 

  8. Blacher, J., & Safar, M. E. (2001). Homocysteine, folic acid, B vitamins and cardiovascular risk. Journal of Nutrition, Health & Aging, 5(3), 196–199.

    CAS  Google Scholar 

  9. Lee, R. T. (2001). Matrix metalloproteinase inhibition and the prevention of heart failure. Trends in Cardiovascular Medicine, 11(5), 202–205.

    Article  PubMed  CAS  Google Scholar 

  10. Sakata, Y., Yamamoto, K., Mano, T., Nishikawa, N., Yoshida, J., Hori, M., et al. (2004). Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: Its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation, 109(17), 2143–2149.

    Article  PubMed  CAS  Google Scholar 

  11. Spinale, F. G., Coker, M. L., Bond, B. R., & Zellner, J. L. (2000). Myocardial matrix degradation and metalloproteinase activation in the failing heart: A potential therapeutic target. Cardiovascular Research, 46(2), 225–238.

    Article  PubMed  CAS  Google Scholar 

  12. Tyagi, S. C., Smiley, L. M., Mujumdar, V. S., Clonts, B., & Parker, J. L. (1998). Reduction-oxidation (Redox) and vascular tissue level of homocyst(e)ine in human coronary atherosclerotic lesions and role in extracellular matrix remodeling and vascular tone. Molecular and Cellular Biochemistry, 181(1–2), 107–116.

    Article  PubMed  CAS  Google Scholar 

  13. Lominadze, D., Roberts, A. M., Tyagi, N., Moshal, K. S., & Tyagi, S. C. (2006). Homocysteine causes cerebrovascular leakage in mice. American Journal of Physiology. Heart and Circulatory Physiology, 290(3), H1206–H1213.

    Article  PubMed  CAS  Google Scholar 

  14. Moshal, K. S., Sen, U., Tyagi, N., Henderson, B., Steed, M., Ovechkin, A. V., et al. (2006). Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. American Journal of Physiology. Cell Physiology, 290(3), C883–C891.

    Article  PubMed  CAS  Google Scholar 

  15. Moshal, K. S., Tipparaju, S. M., Vacek, T. P., Kumar, M., Singh, M., Frank, I. E., et al. (2008). Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H890–H897.

    Article  PubMed  CAS  Google Scholar 

  16. Tyagi, S. C., Rodriguez, W., Patel, A. M., Roberts, A. M., Falcone, J. C., Passmore, J. C., et al. (2005). Hyperhomocysteinemic diabetic cardiomyopathy: Oxidative stress, remodeling, and endothelial-myocyte uncoupling. Journal of Cardiovascular Pharmacology and Therapeutics, 10(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.

    Article  PubMed  CAS  Google Scholar 

  18. Mishra, P. K., Tyagi, N., Kumar, M., & Tyagi, S. C. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 13(4), 778–789.

    Article  PubMed  CAS  Google Scholar 

  19. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.

    Article  PubMed  CAS  Google Scholar 

  20. Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  21. Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: Novel regulators in cardiac development and disease. Cardiovascular Research, 79(4), 562–570.

    Article  PubMed  CAS  Google Scholar 

  22. Van Rooij, E., & Olson, E. N. (2007). MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. Journal of Clinical Investigation, 117(9), 2369–2376.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. Journal of Biological Chemistry, 280(10), 9330–9335.

    Article  PubMed  CAS  Google Scholar 

  24. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  PubMed  CAS  Google Scholar 

  25. Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101(12), 1225–1236.

    Article  PubMed  CAS  Google Scholar 

  26. Lai, E. C. (2002). Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30(4), 363–364.

    Article  PubMed  CAS  Google Scholar 

  27. Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13(12), 1097–1101.

    Article  CAS  Google Scholar 

  28. Zhang, C. (2008). MicroRNAs: Role in cardiovascular biology and disease. Clinical Science, 114(12), 699–706.

    Article  PubMed  CAS  Google Scholar 

  29. Ruby, J. G., Jan, C. H., & Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448(7149), 83–86.

    Article  PubMed  CAS  Google Scholar 

  30. Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., & Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120(1), 21–24.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, C. (2008). MicroRNomics: A newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.

    Article  PubMed  CAS  Google Scholar 

  32. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.

    Article  PubMed  CAS  Google Scholar 

  33. Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., et al. (2007). Critical roles for Dicer in the female germline. Genes and Development, 21(6), 682–693.

    Article  PubMed  CAS  Google Scholar 

  34. Lynn, F. C., Skewes-Cox, P., Kosaka, Y., McManus, M. T., Harfe, B. D., & German, M. S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 56(12), 2938–2945.

    Article  PubMed  CAS  Google Scholar 

  35. Koralov, S. B., Muljo, S. A., Galler, G. R., Krek, A., Chakraborty, T., Kanellopoulou, C., et al. (2008). Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell, 132(5), 860–874.

    Article  PubMed  CAS  Google Scholar 

  36. Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience, 28(17), 4322–4330.

    Article  PubMed  CAS  Google Scholar 

  37. Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101(1), 59–68.

    Article  PubMed  CAS  Google Scholar 

  38. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.

    Article  PubMed  CAS  Google Scholar 

  39. Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Science of the United States of America, 105(6), 2111–2116.

    Article  Google Scholar 

  41. de Ruijter, W., Westendorp, R. G., Assendelft, W. J., den Elzen, W. P., de Craen, A. J., le Cessie, S., et al. (2009). Use of Framingham risk score, new biomarkers to predict cardiovascular mortality in older people: Population based observational cohort study. BMJ, 338, a3083.

    Article  PubMed  Google Scholar 

  42. Kundu, S., Kumar, M., Sen, U., Mishra, P. K., Tyagi, N., Metreveli, N., et al. (2009). Nitrotyrosinylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 106(1), 119–126.

    Article  PubMed  CAS  Google Scholar 

  43. Tyagi, S. C., & Hoit, B. D. (2002). Metalloproteinase in myocardial adaptation and maladaptation. Journal of Cardiovascular Pharmacology and Therapeutics, 7(4), 241–246.

    Article  PubMed  CAS  Google Scholar 

  44. Hsu, C. P., Huang, C. Y., Wang, J. S., Sun, P. C., & Shih, C. C. (2008). Extracellular matrix remodeling attenuated after experimental postinfarct left ventricular aneurysm repair. Annals of Thoracic Surgery, 86(4), 1243–1249.

    Article  PubMed  Google Scholar 

  45. Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., et al. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Science of the United States of America, 95(6), 2979–2984.

    Article  CAS  Google Scholar 

  46. Tyagi, S. C. (1999). Homocysteine and heart disease: Pathophysiology of extracellular matrix. Clinical and Experimental Hypertension, 21(3), 181–198.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

A part of the study was supported by NIH grants HL 71010, HL-74185, and HL-88012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh C. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, P.K., Tyagi, N., Kundu, S. et al. MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling. Cell Biochem Biophys 55, 153–162 (2009). https://doi.org/10.1007/s12013-009-9063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9063-6

Keywords

Navigation