Skip to main content

Advertisement

Log in

Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted with permission from [59] under the Creative Commons CC-BY-NC-ND 4.0 license

Fig. 2

Reprinted with permission from [59] under the Creative Commons CC-BY-NC-ND 4.0 license

Fig. 3

Reprinted with permission from [84] under the Creative Commons Attribution License

Fig. 4
Fig. 5

Reprinted with permission from [86] under a Creative Commons Attribution 4.0 International License

Fig. 6

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

HBOCs:

Hemoglobin-based oxygen carriers

ORBs:

Oxygen-releasing biomaterials

IGF-1:

Insulin-like growth factor

PDGF:

Platelet-derived growth factor

ATP:

Adenosine triphosphate

AMI:

Acute myocardial infarction

FIO2 :

Fraction of inspired oxygen

HBO:

Hyperbaric oxygen

MSCs:

Mesenchymal stem cells

IR:

Ischemia–reperfusion

WR/WLV:

Weight of risk/weight of left ventricle

WI/WLV:

Weight of infarct/weight of left ventricle

ROS:

Reactive oxygen species

PolyPHb:

Polymerized human placenta hemoglobin

PDMS:

Polydimethylsiloxane

3D:

Three-dimensional

PFO:

Perfluorooctane

hPDCs:

Human periosteal cells

SPO:

Sodium percarbonate

CPO:

Calcium peroxide

T1D:

Type 1 diabetes

β cells:

Beta cells

CSPs:

Cardiac side population cells

CPO-GelMA:

Calcium peroxide laden gelatin methacryloyle

PFC:

Perfluorocarbon

References

  1. Ibanez, B., James, S., Agewall, S., Antunes, M. J., Bucciarelli-Ducci, C., Bueno, H., Caforio, A. L., Crea, F., Goudevenos, J. A., Halvorsen, S., & Hindricks, G. (2018). 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 39(2), 119–177.

    PubMed  Google Scholar 

  2. Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Ahmed, M., Aksut, B., Alam, T., Alam, K., & Alla, F. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25.

    PubMed  PubMed Central  Google Scholar 

  3. Kemp, C. D., & Conte, J. V. (2012). The pathophysiology of heart failure. Cardiovascular Pathology, 21(5), 365–371.

    CAS  PubMed  Google Scholar 

  4. Pascual-Gil, S., Garbayo, E., Díaz-Herráez, P., Prosper, F., & Blanco-Prieto, M. J. (2015). Heart regeneration after myocardial infarction using synthetic biomaterials. Journal of Controlled Release, 203, 23–38.

    CAS  PubMed  Google Scholar 

  5. Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., Quaini, E., Di Loreto, C., Beltrami, C. A., Krajewski, S., & Reed, J. C. (1997). Apoptosis in the failing human heart. New England Journal of Medicine, 336(16), 1131–1141.

    CAS  PubMed  Google Scholar 

  6. Park, A.-M., & Suzuki, Y. J. (2007). Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. Journal of Applied Physiology, 102(5), 1806–1814.

    CAS  PubMed  Google Scholar 

  7. Wang, R., Yang, Q., Wang, X., Wang, W., Li, J., Zhu, J., Liu, X., Liu, J., & Du, J. (2016). FoxO3α-mediated autophagy contributes to apoptosis in cardiac microvascular endothelial cells under hypoxia. Microvascular research, 104, 23–31.

    CAS  PubMed  Google Scholar 

  8. Zhong, Z., Hu, J. Q., Wu, X. D., Sun, Y., & Jiang, J. (2016). Anti-apoptotic effects of myocardin-related transcription factor-A on rat cardiomyocytes following hypoxia-induced injury. Canadian journal of physiology and pharmacology, 94(4), 379–387.

    CAS  PubMed  Google Scholar 

  9. Etzion, S., Kedes, L. H., Kloner, R. A., & Leor, J. (2001). Myocardial regeneration. American journal of Cardiovascular Drugs, 1(4), 233–244.

    CAS  PubMed  Google Scholar 

  10. Reboucas, J. S., Santos-Magalhaes, N. S., & Formiga, F. R. (2016). Cardiac regeneration using growth factors: Advances and challenges. Arquivos Brasileiros de Cardiologia, 107(3), 271–275.

    PubMed  PubMed Central  Google Scholar 

  11. Huang, K., Hu, S., & Cheng, K. (2019). A new era of cardiac cell therapy: Opportunities and challenges. Advanced Healthcare Materials, 8(2), 1801011.

    Google Scholar 

  12. Jawad, H., Ali, N. N., Lyon, A. R., Chen, Q. Z., Harding, S. E., & Boccaccini, A. R. (2007). Myocardial tissue engineering: A review. Journal of Tissue Engineering and Regenerative Medicine, 1(5), 327–342.

    CAS  PubMed  Google Scholar 

  13. Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., Kishore, R., Phillips, M. I., Losordo, D. W., & Qin, G. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Costanzo, M. R., Augustine, S., Bourge, R., Bristow, M., O’Connell, J. B., Driscoll, D., & Rose, E. (1995). Selection and treatment of candidates for heart transplantation: A statement for health professionals from the Committee on Heart Failure and Cardiac Transplantation of the Council on Clinical Cardiology, American Heart Association. Circulation, 92(12), 3593–3612.

    CAS  PubMed  Google Scholar 

  15. Michaels, A. D., & Chatterjee, K. (2002). Angioplasty versus bypass surgery for coronary artery disease. Circulation, 106(23), e187–e190.

    PubMed  Google Scholar 

  16. Dall, C., Khan, M., Chen, C. A., & Angelos, M. G. (2016). Oxygen cycling to improve survival of stem cells for myocardial repair: A review. Life sciences, 153, 124–131.

    CAS  PubMed  Google Scholar 

  17. Hashemi, S. S., Nazempour, M., Mehrabani, D., & Aghdam, R. M. (2019). The effect of allogenic human Wharton's jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. Journal of Cosmetic Dermatlogy, 13(1), 1–7.

    CAS  Google Scholar 

  18. White, S. J., & Chong, J. J. (2020). Growth factor therapy for cardiac repair: An overview of recent advances and future directions. Biophysical Reviews, 12, 1–11.

    Google Scholar 

  19. He, J. Q., Vu, D. M., Hunt, G., Chugh, A., Bhatnagar, A., & Bolli, R. (2011). Human cardiac stem cells isolated from atrial appendages stably express c-kit. PloS One, 6(11), e27719.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramalingam, M., Ramakrishna, S., & Best, S. (Eds.). (2012). Biomaterials and stem cells in regenerative medicine. CRC Press.

    Google Scholar 

  21. Mathiasen, A. B., Qayyum, A. A., Jørgensen, E., Helqvist, S., Fischer-Nielsen, A., Kofoed, K. F., Haack-Sørensen, M., Ekblond, A., & Kastrup, J. (2015). Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: A randomized placebo-controlled trial (MSC-HF trial). European Heart Journal, 36(27), 1744–1753.

    CAS  PubMed  Google Scholar 

  22. Rodrigo, S. F., van Ramshorst, J., Hoogslag, G. E., Boden, H., Velders, M. A., Cannegieter, S. C., Roelofs, H., Al Younis, I., Dibbets-Schneider, P., Fibbe, W. E., & Zwaginga, J. J. (2013). Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. Journal of Cardiovascular Translational Research, 6(5), 816–825.

    PubMed  PubMed Central  Google Scholar 

  23. Mukherjee, S., Venugopal, J. R., Ravichandran, R., Ramalingam, M., Raghunath, M., & Ramakrishna, S. (2013). Nanofiber technology for controlling stem cell functions and tissue engineering. Micro and nanotechnologies in engineering stem cells and tissues (pp. 27–51). Wiley.

    Google Scholar 

  24. Cheng, K., Malliaras, K., Smith, R. R., Shen, D., Sun, B., Blusztajn, A., Xie, Y., Ibrahim, A., Aminzadeh, M. A., Liu, W., & Li, T. S. (2014). Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in myocardial repair. JACC: Heart Failure, 2(1), 49–61.

    PubMed  Google Scholar 

  25. Davis, D. R., Zhang, Y., Smith, R. R., Cheng, K., Terrovitis, J., Malliaras, K., Li, T. S., White, A., Makkar, R., & Marbán, E. (2009). Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PloS One, 4(9), e7195.

    PubMed  PubMed Central  Google Scholar 

  26. Funakoshi, S., Miki, K., Takaki, T., Okubo, C., Hatani, T., Chonabayashi, K., Nishikawa, M., Takei, I., Oishi, A., Narita, M., & Hoshijima, M. (2016). Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Scientific Reports, 6(1), 1–14.

    Google Scholar 

  27. Ja, K. M. M., Miao, Q., Tee, N. G. Z., Lim, S. Y., Nandihalli, M., Ramachandra, C. J., Mehta, A., & Shim, W. (2016). iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium. Journal of Cellular and Molecular Medicine, 20(2), 323–332.

    PubMed  Google Scholar 

  28. Tang, J., Cui, X., Caranasos, T. G., Hensley, M. T., Vandergriff, A. C., Hartanto, Y., Shen, D., Zhang, H., Zhang, J., & Cheng, K. (2017). Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano, 11(10), 9738–9749.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hortensius, R. A., Lin, W. H., & Ogle, B. M. (2019). Cardiac tissue engineering: A pathway for repair. Engineering in medicine (pp. 3–33). Academic Press.

    Google Scholar 

  30. Wu, K. H., Mo, X. M., Han, Z. C., & Zhou, B. (2011). Stem cell engraftment and survival in the ischemic heart. The Annals of Thoracic Surgery, 92(5), 1917–1925.

    PubMed  Google Scholar 

  31. Zhang, H., Chen, H., Wang, W., Wei, Y., & Hu, S. (2010). Cell survival and redistribution after transplantation into damaged myocardium. Journal of Cellular and Molecular Medicine, 14(5), 1078–1082.

    PubMed  PubMed Central  Google Scholar 

  32. Shin, S. R., Jung, S. M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S. B., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., & Wan, K. T. (2013). Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 7(3), 2369–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rana, D., Arulkumar, S., Vishwakarma, A., & Ramalingam, M. (2015). Considerations on designing scaffold for tissue engineering. Stem cell biology and tissue engineering in dental sciences (pp. 133–148). Academic Press.

    Google Scholar 

  34. Gaetani, R., Feyen, D. A., Verhage, V., Slaats, R., Messina, E., Christman, K. L., Giacomello, A., Doevendans, P. A., & Sluijter, J. P. (2015). Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 61, 339–348.

    CAS  PubMed  Google Scholar 

  35. Zhang, D., Shadrin, I. Y., Lam, J., Xian, H. Q., Snodgrass, H. R., & Bursac, N. (2013). Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials, 34(23), 5813–5820.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyagi, Y., Chiu, L. L., Cimini, M., Weisel, R. D., Radisic, M., & Li, R. K. (2011). Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 32(5), 1280–1290.

    CAS  PubMed  Google Scholar 

  37. Ahadian, S., Sadeghian, R. B., Salehi, S., Ostrovidov, S., Bae, H., Ramalingam, M., & Khademhosseini, A. (2015). Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjugate Chemistry, 26(10), 1984–2001.

    CAS  PubMed  Google Scholar 

  38. Khan, M., Kwiatkowski, P., Rivera, B. K., & Kuppusamy, P. (2010). Oxygen and oxygenation in stem-cell therapy for myocardial infarction. Life Sciences, 87(9–10), 269–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gholipourmalekabadi, M., Zhao, S., Harrison, B. S., Mozafari, M., & Seifalian, A. M. (2016). Oxygen-generating biomaterials: A new, viable paradigm for tissue engineering? Trends in Biotechnology, 34(12), 1010–1021.

    CAS  PubMed  Google Scholar 

  40. Kim, H. Y., Kim, S. Y., Lee, H. Y., Lee, J. H., Rho, G. J., Lee, H. J., Lee, H. C., Byun, J. H., & Oh, S. H. (2019). Oxygen-releasing microparticles for cell survival and differentiation ability under hypoxia for effective bone regeneration. Biomacromolecules, 20(2), 1087–1097.

    CAS  PubMed  Google Scholar 

  41. Kutala, V. K., Khan, M., Angelos, M. G., & Kuppusamy, P. (2007). Role of oxygen in postischemic myocardial injury. Antioxidants & Redox Signaling, 9(8), 1193–1206.

    CAS  Google Scholar 

  42. Beasley, R., Weatherall, M., Aldington, S., Mchaffie, D., & Robinson, G. (2007). Oxygen therapy in myocardial infarction: An historical perspective. Journal of the Royal Society of Medicine, 100(3), 130–133.

    PubMed  PubMed Central  Google Scholar 

  43. Maroko, P. R., Radvany, P. A. U. L. O., Braunwald, E. U. G. E. N. E., & Hale, S. L. (1975). Reduction of infarct size by oxygen inhalation following acute coronary occlusion. Circulation, 52(3), 360–368.

    CAS  PubMed  Google Scholar 

  44. Alemdar, N., Leijten, J., Camci-Unal, G., Hjortnaes, J., Ribas, J., Paul, A., Mostafalu, P., Gaharwar, A. K., Qiu, Y., Sonkusale, S., & Liao, R. (2017). Oxygen-generating photo-cross-linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis. ACS Biomaterials Science & Engineering, 3(9), 1964–1971.

    CAS  Google Scholar 

  45. Lim, G. B. (2017). Supplemental oxygen in myocardial infarction. Nature Reviews Cardiology, 14(11), 632–632.

    PubMed  Google Scholar 

  46. Bateman, N. T., & Leach, R. M. (1998). Acute oxygen therapy. BMJ, 317(7161), 798–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shuvy, M., Atar, D., Gabriel Steg, P., Halvorsen, S., Jolly, S., Yusuf, S., & Lotan, C. (2013). Oxygen therapy in acute coronary syndrome: Are the benefits worth the risk? European Heart Journal, 34(22), 1630–1635.

    CAS  PubMed  Google Scholar 

  48. Kelly, R. F., Hursey, T. L., Parrillo, J. E., & Schaer, G. L. (1995). Effect of 100% oxygen administration on infarct size and left ventricular function in a canine model of myocardial infarction and reperfusion. American Heart Journal, 130(5), 957–965.

    CAS  PubMed  Google Scholar 

  49. Rawles, J. M., & Kenmure, A. C. (1976). Controlled trial of oxygen in uncomplicated myocardial infarction. British Medical Journal, 1(6018), 1121–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Madias, J. E., & Hood, W. B., Jr. (1976). Reduction of precordial ST-segment elevation in patients with anterior myocardial infarction by oxygen breathing. Circulation, 53(3 Suppl), I198–I200.

    CAS  PubMed  Google Scholar 

  51. Kenmure, A. C. F., Murdoch, W. R., Beattie, A. D., Marshall, J. C. B., & Cameron, A. J. V. (1968). Circulatory and metabolic effects of oxygen in myocardial infarction. British Medical Journal, 4(5627), 360–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nicholson, C. (2004). A systematic review of the effectiveness of oxygen in reducing acute myocardial ischaemia. Journal of Clinical Nursing, 13(8), 996–1007.

    PubMed  Google Scholar 

  53. Wijesinghe, M., Perrin, K., Ranchord, A., Simmonds, M., Weatherall, M., & Beasley, R. (2009). Routine use of oxygen in the treatment of myocardial infarction: Systematic review. Heart, 95(3), 198–202.

    CAS  PubMed  Google Scholar 

  54. Cabello, J. B., Burls, A., Emparanza, J. I., Bayliss, S. E., & Quinn, T. (2016). Oxygen therapy for acute myocardial infarction. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD007160.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, W. F., Huang, Y. Q., & Feng, Y. Q. (2018). Oxygen therapy for patients with acute myocardial infarction: A meta-analysis of randomized controlled clinical trials. Coronary Artery Disease, 29(8), 652–656.

    PubMed  Google Scholar 

  56. Grim, P. S., Gottlieb, L. J., Boddie, A., & Batson, E. (1990). Hyperbaric oxygen therapy. JAMA, 263(16), 2216–2220.

    CAS  PubMed  Google Scholar 

  57. Stavitsky, Y., Shandling, A. H., Ellestad, M. H., Hart, G. B., Van Natta, B., Messenger, J. C., Strauss, M., Dekleva, M. N., Alexander, J. M., Mattice, M., & Clarke, D. (1998). Hyperbaric oxygen and thrombolysis in myocardial infarction: The ‘HOT MI’randomized multicenter study. Cardiology, 90(2), 131–136.

    CAS  PubMed  Google Scholar 

  58. Khan, M., Meduru, S., Gogna, R., Madan, E., Citro, L., Kuppusamy, M. L., Sayyid, M., Mostafa, M., Hamlin, R. L., & Kuppusamy, P. (2012). Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function. Cardiovascular Research, 93(1), 89–99.

    CAS  PubMed  Google Scholar 

  59. Chen, C., Chen, W., Nong, Z., Ma, Y., Qiu, S., & Wu, G. (2016). Cardioprotective effects of combined therapy with hyperbaric oxygen and diltiazem pretreatment on myocardial ischemia-reperfusion injury in rats. Cellular Physiology and Biochemistry, 38(5), 2015–2029.

    CAS  PubMed  Google Scholar 

  60. Dekleva, M., Neskovic, A., Vlahovic, A., Putnikovic, B., Beleslin, B., & Ostojic, M. (2004). Adjunctive effect of hyperbaric oxygen treatment after thrombolysis on left ventricular function in patients with acute myocardial infarction. American Heart Journal, 148(4), 589.

    CAS  Google Scholar 

  61. Vlahović, A., Nešković, A. N., Dekleva, M., Putniković, B., Popović, Z. B., Otašević, P., & Ostojić, M. (2004). Hyperbaric oxygen treatment does not affect left ventricular chamber stiffness after myocardial infarction treated with thrombolysis. American Heart Journal, 148(1), 85.

    Google Scholar 

  62. Bennett, M. H., Lehm, J. P., & Jepson, N. (2015). Hyperbaric oxygen therapy for acute coronary syndrome. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004818.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raut, M. S., & Maheshwari, A. (2016). Oxygen supplementation in acute myocardial infarction: To be or not to be? Annals of Cardiac Anaesthesia, 19(2), 342.

    PubMed  PubMed Central  Google Scholar 

  64. Abuzaid, A., Fabrizio, C., Felpel, K., Al Ashry, H. S., Ranjan, P., Elbadawi, A., Mohamed, A. H., Barssoum, K., & Elgendy, I. Y. (2018). Oxygen therapy in patients with acute myocardial infarction: A systemic review and meta-analysis. The American Journal of Medicine, 131(6), 693–701.

    PubMed  Google Scholar 

  65. McNulty, P. H., King, N., Scott, S., Hartman, G., McCann, J., Kozak, M., Chambers, C. E., Demers, L. M., & Sinoway, L. I. (2005). Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. American Journal of Physiology-Heart and Circulatory Physiology, 288(3), H1057–H1062.

    CAS  PubMed  Google Scholar 

  66. McNulty, P. H., Robertson, B. J., Tulli, M. A., Hess, J., Harach, L. A., Scott, S., & Sinoway, L. I. (2007). Effect of hyperoxia and vitamin C on coronary blood flow in patients with ischemic heart disease. Journal of Applied Physiology, 102(5), 2040–2045.

    PubMed  Google Scholar 

  67. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84.

    CAS  Google Scholar 

  68. Zweier, J. L., & Talukder, M. H. (2006). The role of oxidants and free radicals in reperfusion injury. Cardiovascular Research, 70(2), 181–190.

    CAS  PubMed  Google Scholar 

  69. Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells and Development, 24(10), 1150–1163.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodwell, V. W., & Kennelly, P. J. (2003). Enzymes: Mechanism of action. In R. K. Murray, D. K. Granner, P. A. Mayes, & V. W. Rodwell (Eds.), Harper’s illustrated biochemistry (26th ed., p. 57). Lange Medical Books/McGraw-Hill.

    Google Scholar 

  71. Gupta, A. S. (2019). Hemoglobin-based oxygen carriers: Current state-of-the-art and novel molecules. Shock (Augusta, Ga.), 52(1), 70.

    Google Scholar 

  72. Farris, A. L., Rindone, A. N., & Grayson, W. L. (2016). Oxygen delivering biomaterials for tissue engineering. Journal of Materials Chemistry B, 4(20), 3422–3432.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hamilton, R. G., Kelly, N., Gawryl, M. S., & Rentko, V. T. (2001). Absence of immunopathology associated with repeated IV administration of bovine Hb-based oxygen carrier in dogs. Transfusion, 41(2), 219–225.

    CAS  PubMed  Google Scholar 

  74. George, I., Yi, G. H., Schulman, A. R., Morrow, B. T., Cheng, Y., Gu, A., Zhang, G., Oz, M. C., Burkhoff, D., & Wang, J. (2006). A polymerized bovine hemoglobin oxygen carrier preserves regional myocardial function and reduces infarct size after acute myocardial ischemia. American Journal of Physiology-Heart and Circulatory Physiology, 291(3), H1126–H1137.

    CAS  PubMed  Google Scholar 

  75. Li, T., Liu, J., & Yang, C. (2010). Pretreatment with hemoglobin-based oxygen carriers protect isolated rat heart from myocardial infarction. Artificial Cells, Blood Substitutes, and Biotechnology, 38(3), 115–118.

    PubMed  Google Scholar 

  76. Caswell, J. E., Strange, M. B., Rimmer, D. M., III., Gibson, M. F., Cole, P., & Lefer, D. J. (2005). A novel hemoglobin-based blood substitute protects against myocardial reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 288(4), H1796–H1801.

    CAS  PubMed  Google Scholar 

  77. Njoku, M., Peter, D. S., & Mackenzie, C. F. (2015). Haemoglobin-based oxygen carriers: Indications and future applications. British Journal of Hospital Medicine, 76(2), 78–83.

    PubMed  Google Scholar 

  78. Cabrales, P., & Intaglietta, M. (2013). Blood substitutes: Evolution from non-carrying to oxygen and gas carrying fluids. ASAIO Journal (American Society for Artificial Internal Organs: 1992), 59(4), 337–354.

    CAS  Google Scholar 

  79. Alayash, A. I. (2014). Blood substitutes: Why haven’t we been more successful? Trends in Biotechnology, 32(4), 177–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. García-Ruiz, J. M., Galán-Arriola, C., Fernández-Jiménez, R., Aguero, J., Sánchez-González, J., García-Alvarez, A., Nuno-Ayala, M., Dubé, G. P., Zafirelis, Z., López-Martín, G. J., & Bernal, J. A. (2017). Bloodless reperfusion with the oxygen carrier HBOC-201 in acute myocardial infarction: A novel platform for cardioprotective probes delivery. Basic Research in Cardiology, 112(2), 17.

    PubMed  Google Scholar 

  81. te Lintel Hekkert, M., Dubé, G. P., Regar, E., de Boer, M., Vranckx, P., van der Giessen, W. J., Serruys, P. W., & Duncker, D. J. (2010). Preoxygenated hemoglobin-based oxygen carrier HBOC-201 annihilates myocardial ischemia during brief coronary artery occlusion in pigs. American Journal of Physiology-Heart and Circulatory Physiology, 298, H1103–H1113.

    Google Scholar 

  82. Mackenzie, C. F., Dubé, G. P., Pitman, A., & Zafirelis, M. (2019). Users guide to pitfalls and lessons learned about HBOC-201 during clinical trials, expanded access, and clinical use in 1,701 patients. Shock, 52(1S), 92–99.

    CAS  PubMed  Google Scholar 

  83. Li, T., Yu, R., Zhang, H. H., Wang, H., Liang, W. G., Yang, X. M., & Yang, C. M. (2006). A method for purification and viral inactivation of human placenta hemoglobin. Artificial Cells, Blood Substitutes, and Biotechnology, 34(2), 175–188.

    PubMed  Google Scholar 

  84. Yang, Q., Wu, W., Li, Q., Chen, C., Zhou, R., Qiu, Y., Luo, M., Tan, Z., Li, S., Chen, G., & Zhou, W. (2015). High-dose polymerized hemoglobin fails to alleviate cardiac ischemia/reperfusion injury due to induction of oxidative damage in coronary artery. Oxidative Medicine and Cellular Longevity, 2015, 125106.

    PubMed  PubMed Central  Google Scholar 

  85. Tsuchida, E., Sou, K., Nakagawa, A., Sakai, H., Komatsu, T., & Kobayashi, K. (2009). Artificial oxygen carriers, hemoglobin vesicles and albumin− hemes, based on bioconjugate chemistry. Bioconjugate Chemistry, 20(8), 1419–1440.

    CAS  PubMed  Google Scholar 

  86. Fan, Z., Xu, Z., Niu, H., Gao, N., Guan, Y., Li, C., Dang, Y., Cui, X., Liu, X. L., Duan, Y., & Li, H. (2018). An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Scientific Reports, 8(1), 1–22.

    Google Scholar 

  87. Estep, T. N. (2019). Haemoglobin-based oxygen carriers and myocardial infarction. Artificial cells, nanomedicine, and biotechnology, 47(1), 593–601.

    CAS  PubMed  Google Scholar 

  88. Momen, A., Mascarenhas, V., Gahremanpour, A., Gao, Z., Moradkhan, R., Kunselman, A., Boehmer, J. P., Sinoway, L. I., & Leuenberger, U. A. (2009). Coronary blood flow responses to physiological stress in humans. American Journal of Physiology-Heart and Circulatory Physiology, 296(3), H854–H861.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Barsotti, M. C., Felice, F., Balbarini, A., & Di Stefano, R. (2011). Fibrin as a scaffold for cardiac tissue engineering. Biotechnology and Applied Biochemistry, 58(5), 301–310.

    CAS  PubMed  Google Scholar 

  90. Karam, J. P., Muscari, C., Sindji, L., Bastiat, G., Bonafè, F., Venier-Julienne, M. C., & Montero-Menei, N. C. (2014). Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. Journal of Controlled Release, 192, 82–94.

    CAS  PubMed  Google Scholar 

  91. Jiang, L., Chen, D., Wang, Z., Zhang, Z., Xia, Y., Xue, H., & Liu, Y. (2019). Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering. Applied Biochemistry and Biotechnology, 188(4), 952–964.

    CAS  PubMed  Google Scholar 

  92. Seif-Naraghi, S. B., Salvatore, M. A., Schup-Magoffin, P. J., Hu, D. P., & Christman, K. L. (2010). Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering Part A, 16(6), 2017–2027.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lovett, M., Lee, K., Edwards, A., & Kaplan, D. L. (2009). Vascularization strategies for tissue engineering. Tissue Engineering Part B: Reviews, 15(3), 353–370.

    CAS  Google Scholar 

  94. Ward, C. L., Corona, B. T., Yoo, J. J., Harrison, B. S., & Christ, G. J. (2013). Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PloS One, 8(8), e72485.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, H. Y., Kim, H. W., Lee, J. H., & Oh, S. H. (2015). Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment. Biomaterials, 53, 583–591.

    CAS  PubMed  Google Scholar 

  96. Shiekh, P. A., Singh, A., & Kumar, A. (2018). Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications. ACS Applied Materials & Interfaces, 10(22), 18458–18469.

    CAS  Google Scholar 

  97. Abdi, S. I. H., Ng, S. M., & Lim, J. O. (2011). An enzyme-modulated oxygen-producing micro-system for regenerative therapeutics. International Journal of Pharmaceutics, 409(1–2), 203–205.

    CAS  PubMed  Google Scholar 

  98. Li, Z., Guo, X., & Guan, J. (2012). An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials, 33(25), 5914–5923.

    CAS  PubMed  Google Scholar 

  99. Abdi, S. I. H., Choi, J. Y., Lau, H. C., & Lim, J. O. (2013). Controlled release of oxygen from PLGA-alginate layered matrix and its in vitro characterization on the viability of muscle cells under hypoxic environment. Tissue Engineering and Regenerative Medicine, 10(3), 131–138.

    CAS  Google Scholar 

  100. Oh, S. H., Ward, C. L., Atala, A., Yoo, J. J., & Harrison, B. S. (2009). Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 30(5), 757–762.

    CAS  PubMed  Google Scholar 

  101. Pedraza, E., Coronel, M. M., Fraker, C. A., Ricordi, C., & Stabler, C. L. (2012). Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proceedings of the National Academy of Sciences USA, 109(11), 4245–4250.

    CAS  Google Scholar 

  102. Lee, Y., Son, J. Y., Kang, J. I., Park, K. M., & Park, K. D. (2018). Hydrogen peroxide–releasing hydrogels for enhanced endothelial cell activities and neovascularization. ACS Applied Materials & Interfaces, 10(21), 18372–18379.

    CAS  Google Scholar 

  103. Liu, G., & Porterfield, D. M. (2014). Oxygen enrichment with magnesium peroxide for minimizing hypoxic stress of flooded corn. Journal of Plant Nutrition and Soil Science, 177(5), 733–740.

    CAS  Google Scholar 

  104. Harrison, B. S., Eberli, D., Lee, S. J., Atala, A., & Yoo, J. J. (2007). Oxygen producing biomaterials for tissue regeneration. Biomaterials, 28(31), 4628–4634.

    CAS  PubMed  Google Scholar 

  105. Ghelich, R., Aghdam, R. M., Torknik, F. S., & Jahannama, M. R. (2016). Low temperature carbothermal reduction synthesis of ZrC nanofibers via cyclized electrospun PVP/Zr(OPr)4 hybrid. International Journal of Applied Ceramic Technology, 13(2), 352–358.

    CAS  Google Scholar 

  106. Touri, M., Moztarzadeh, F., Osman, N. A. A., Dehghan, M. M., & Mozafari, M. (2019). Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceramics International, 45(1), 805–816.

    CAS  Google Scholar 

  107. Mohseni-Vadeghani, E., Karimi-Soflou, R., Khorshidi, S., & Karkhaneh, A. (2021). Fabrication of oxygen and calcium releasing microcarriers with different internal structures for bone tissue engineering: Solid filled versus hollow microparticles. Colloids and Surfaces B: Biointerfaces, 197, 111376.

    CAS  PubMed  Google Scholar 

  108. Choi, J., Hong, G., Kwon, T., & Lim, J. O. (2018). Fabrication of oxygen releasing scaffold by embedding H2O2-PLGA microspheres into alginate-based hydrogel sponge and its application for wound healing. Applied Sciences, 8(9), 1492.

    Google Scholar 

  109. Kang, J. I., Park, K. M., & Park, K. D. (2019). Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. Journal of Industrial and Engineering Chemistry, 69, 397–404.

    CAS  Google Scholar 

  110. McQuilling, J. P., Sittadjody, S., Pendergraft, S., Farney, A. C., & Opara, E. C. (2017). Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. Biomaterials Science, 5(12), 2437–2447.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Seifu, D. G., Isimjan, T. T., & Mequanint, K. (2011). Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors. Acta Biomaterialia, 7(10), 3670–3678.

    CAS  PubMed  Google Scholar 

  112. Fu, H., Fu, J., Ma, S., Wang, H., Lv, S., & Hao, Y. (2020). An ultrasound activated oxygen generation nanosystem specifically alleviates myocardial hypoxemia and promotes cell survival following acute myocardial infarction. Journal of Materials Chemistry B, 8(28), 6059–6068.

    CAS  PubMed  Google Scholar 

  113. Montazeri, L., Kowsari-Esfahan, R., Pahlavan, S., Sobat, M., Rabbani, S., Ansari, H., Varzideh, F., Barekat, M., Rajabi, S., Navaee, F., & Bonakdar, S. (2021). Oxygen-rich environment ameliorates cell therapy outcomes of cardiac progenitor cells for myocardial infarction. Materials Science and Engineering: C, 121, 111836.

    CAS  Google Scholar 

  114. Ding, J., Yao, Y., Li, J., Duan, Y., Nakkala, J. R., Feng, X., Cao, W., Wang, Y., Hong, L., Shen, L., & Mao, Z. (2020). A reactive oxygen species scavenging and O2 generating injectable hydrogel for myocardial infarction treatment in vivo. Small (Weinheim an der Bergstrasse, Germany), 16(48), 2005038.

    CAS  Google Scholar 

  115. Erdem, A., Darabi, M. A., Nasiri, R., Sangabathuni, S., Ertas, Y. N., Alem, H., Hosseini, V., Shamloo, A., Nasr, A. S., Ahadian, S., & Dokmeci, M. R. (2020). 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Advanced Healthcare Materials, 9(15), 1901794.

    CAS  Google Scholar 

  116. Camci-Unal, G., Alemdar, N., Annabi, N., & Khademhosseini, A. (2013). Oxygen-releasing biomaterials for tissue engineering. Polymer International, 62(6), 843–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Willemen, N. G., Hassan, S., Gurian, M., Li, J., Allijn, I. E., Shin, S. R., & Leijten, J. (2021). Oxygen-releasing biomaterials: Current challenges and future applications. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2021.01.007

    Article  PubMed  Google Scholar 

  118. Suvarnapathaki, S., Wu, X., Lantigua, D., Nguyen, M. A., & Camci-Unal, G. (2019). Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Materials, 11(1), 1–18.

    Google Scholar 

  119. Ashammakhi, N., Darabi, M. A., Kehr, N. S., Erdem, A., Hu, S. K., Dokmeci, M. R., Nasr, A. S., & Khademhosseini, A. (2019). Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy. Biomacromolecules, 21(1), 56–72.

    PubMed  Google Scholar 

  120. Razavi, M., Primavera, R., Kevadiya, B. D., Wang, J., Buchwald, P., & Thakor, A. S. (2020). A collagen based cryogel bioscaffold that generates oxygen for islet transplantation. Advanced Functional Materials, 30(15), 1902463.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, M., Kiratiwongwan, T., & Shen, W. (2020). Oxygen-releasing polycaprolactone/calcium peroxide composite microspheres. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(3), 1097–1106.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Institute for Medical Research Development (NIMAD) (Grant No. 972838) for the financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rouhollah Mehdinavaz Aghdam or Murugan Ramalingam.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Handling Editor: Vincent FM Segers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenabi, A., Mehdinavaz Aghdam, R., Ebrahimi, S.A.S. et al. Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges. Cardiovasc Toxicol 22, 207–224 (2022). https://doi.org/10.1007/s12012-021-09696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09696-5

Keywords

Navigation