Skip to main content
Log in

Salutary Effect of Cassia auriculata L. Leaves on Hyperglycemia-Induced Atherosclerotic Environment in Streptozotocin Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Diabetes mellitus is very often associated with dyslipidemia, increased oxidative stress and endothelial dysfunction that could develop atherosclerosis and consequently cardiovascular diseases. Medicinal plants with reputed traditional use to treat diabetes and cardiovascular diseases might provide valuable drugs. Therefore, the present study was designed to evaluate anti-atherosclerotic potential of aqueous extract of Cassia auriculata L. leaves in streptozotocin (STZ)-induced diabetic rats. The rats were rendered diabetic by STZ (45 mg/kg, ip). Diabetic rats were orally administered C. auriculata leaf extract at 400 mg/kg dose daily for 21 days. The supplementation of extract to the diabetic rats produced significant reduction in fasting blood glucose along with significant reversal in altered serum lipid profile and apolipoprotein B. Lipid peroxidation was found to be significantly suppressed in extract-fed diabetic rats. The significant reduction in serum levels of oxidized low-density lipoprotein, soluble vascular cell adhesion molecule and plasma fibrinogen with a concomitant elevation in serum nitric oxide was observed in diabetic rats following treatment with extract. Histopathological examination of heart myocardium of extract-treated diabetic rats revealed reversal of fatty change toward normal. These results suggest that C. auriculata aqueous leaf extract exhibits anti-atherosclerotic role in the diabetic state and it indicates toward the notion that extract may help to prevent the progression of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Welborn, T. A., & Wearne, K. (1979). Coronary artery disease and cardiovascular mortility in Busselton; with reference to glucose and insulin concentrations. Diabetes Care, 2, 154–160.

    Article  PubMed  CAS  Google Scholar 

  2. Keen, H., Clark, C., & Laakso, M. (1999). Reducing the burden of diabetes: Managing cardiovascular disease. Diabetes/Metabolism Research and Reviews, 15, 186–196.

    Article  PubMed  CAS  Google Scholar 

  3. Esterbauer, H., Wag, G., & Puhl, H. (1993). Lipid peroxidation and its role in atherosclerosis. British Medical Bulletin, 49, 566–576.

    PubMed  CAS  Google Scholar 

  4. Dominiczak, M. H. (1998). Hyperlipidemia and cardiovascular disease. Current Opinion in Lipidology, 9, 609–611.

    Article  PubMed  CAS  Google Scholar 

  5. Rask-Madsen, C., & King, G. L. (2005). Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 487–496.

    Article  PubMed  CAS  Google Scholar 

  6. Davidson, M. H., & Tooth, P. P. (2004). Comparative effect of lipid lowering therapies. Progress in Cardiovascular Diseases, 47, 173–204.

    Article  Google Scholar 

  7. Wang, H. X., & Ng, T. B. (1999). Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sciences, 65, 2663–2677.

    Article  PubMed  CAS  Google Scholar 

  8. Singh, V., & Pandey, R. P. (1980). Medicinal plantlore of the tribals of eastern Rajasthan. Journal of Economic and Taxonomic Botany, 1, 137–147.

    Google Scholar 

  9. Sandhya, B., Thomas, S., Isabel, W., & Shenbagarathai, R. (2006). Ethnomedicinal plants used by the valaiyan community of Piramalai hills (Reserved forest), Tamilnadu, India—a pilot study. African Journal of Traditional, Complementary and Alternative Medicines, 3, 101–114.

    Google Scholar 

  10. Pari, L., & Latha, M. (2002). Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Medical Journal, 43, 617–621.

    PubMed  CAS  Google Scholar 

  11. Pari, L., Ramakrishan, R., & Venkateswaran, S. (2001). Antihyperglycemic effect of Diamed, a herbal formulation, in experimental diabetes in rats. Journal of Pharmacy and Pharmacology, 53, 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  12. Mutalik, S., Chetana, M., Sulochana, B., Devi, P. U., & Udupa, N. (2005). Effect of Dianex, a herbal formulation on experimentally induced diabetes mellitus. Phytotherapy Research, 19, 409–415.

    Article  PubMed  CAS  Google Scholar 

  13. Saravanan, R., & Pari, L. (2005). Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complementary and Alternative Medicine, 5, 14–21.

    Article  PubMed  Google Scholar 

  14. Kalaivani, A., Umamaheswari, A., Vinayagam, A., & Kalaivani, K. (2008). Antihyperglycemic and antioxidant properties of Cassia auriculata leaves and flowers on alloxan-induced diabetic rats. Pharmacologyonline, 1, 204–217.

    Google Scholar 

  15. Gupta, S., Sharma, S. B., Prabu, K. M., & Bansal, S. K. (2009). Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. Journal of Ethnopharmacology, 123, 499–503.

    Article  PubMed  Google Scholar 

  16. Harborne, J. B. (1984). Phytochemical methods: A guide to modern techniques of plant analysis. London: Chapman & Hall.

    Google Scholar 

  17. Zimmermann, M. (1983). Ethical guidelines for investigations of experimental pain in conscious animals. Pain, 16, 109–110.

    Article  PubMed  CAS  Google Scholar 

  18. Siddiqui, O., Sun, Y., Liu, J. C., & Chien, Y. W. (1987). Facilitated transdermal transport of insulin. Journal of Pharmaceutical Sciences, 76, 341–345.

    Article  PubMed  CAS  Google Scholar 

  19. Sorg, D. A., & Buckner, B. (1964). A simple method of obtaining venous blood from small laboratory animals. Proceedings of the Society for Experimental Biology and Medicine, 115, 1131–1132.

    PubMed  CAS  Google Scholar 

  20. Barham, D., & Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst, 97, 142–145.

    Article  PubMed  CAS  Google Scholar 

  21. Fossati, P., & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28, 2077–2080.

    PubMed  CAS  Google Scholar 

  22. Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20, 470–475.

    PubMed  CAS  Google Scholar 

  23. Burstein, M., Scholnick, H. R., & Morfin, R. (1970). Rapid method for isolation of lipoprotein from human serum by precipitation with polyanions. Journal of Lipid Research, 11, 583–595.

    PubMed  CAS  Google Scholar 

  24. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clinical Chemistry, 18, 499–502.

    PubMed  CAS  Google Scholar 

  25. Satoh, K. (1978). Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta, 90, 37–43.

    Article  CAS  Google Scholar 

  26. Ahotupa, M., Ruutu, M., & Mantyla, E. (1996). Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clinical Biochemistry, 29, 139–144.

    Article  PubMed  CAS  Google Scholar 

  27. Moshage, H., Kok, B., Huizenga, J. R., & Jansen, P. L. (1995). Nitrite and nitrate determinations in plasma: A critical evaluation. Clinical Chemistry, 41, 892–896.

    PubMed  CAS  Google Scholar 

  28. Mukherjee, P. K., Maiti, K., Mukherjee, K., & Houghton, P. J. (2006). Leads from Indian medicinal plants with hypoglycemic potentials. Journal of Ethnopharmacology, 106, 1–28.

    Article  PubMed  CAS  Google Scholar 

  29. Soetan, K. O. (2008). Pharmacological and other beneficial effects of antinutritional factors in plants: A review. African Journal of Biotechnology, 7, 4713–4721.

    CAS  Google Scholar 

  30. Rankin, S. M., DeWhalley, C. V., Hoult, S., Jessup, W., Willins, G. M., Collard, J., et al. (1993). The modification of low density lipoprotein by the flavonoids Myricentin and Gossypetin. Biochemical Pharmacology, 45, 67–75.

    Article  PubMed  CAS  Google Scholar 

  31. Oakenfull, D. G., & Sidhu, G. S. (1983). A physico-chemical explanation for the effects of dietary saponins on cholesterol and bile salt metabolism. Nutrition Reports International, 27, 1253–1259.

    Google Scholar 

  32. Terao, J. (1999). Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. Journal of Medical Investigation, 46, 159–168.

    PubMed  CAS  Google Scholar 

  33. White, E. L., Ross, L. J., Hobbs, P. D., Upender, V., & Dawson, M. I. (1999). Antioxidant activity of michellamine alkaloids. Anticancer Research, 19, 1033–1035.

    PubMed  CAS  Google Scholar 

  34. Gulcin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2004). Antioxidant activity of saponins isolated from ivy: alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica, 70, 561–563.

    Article  PubMed  Google Scholar 

  35. Elsner, M., Guldbakke, B., Tiedge, M., Munday, R., & Lenzen, S. (2000). Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia, 43, 1528–1533.

    Article  PubMed  CAS  Google Scholar 

  36. Kunjathoor, V. V., Wilson, D. L., & LeBoeuf, R. C. (1996). Increased atherosclerosis in streptozotocin-induced diabetic mice. Journal of Clinical Investigation, 97, 1767–1773.

    Article  PubMed  CAS  Google Scholar 

  37. Gupta, S., Sharma, S. B., & Prabhu, K. M. (2009). Ameliorative effect of Cassia auriculata leaf extract on blood glucose and atherogenic lipid profile in alloxan-induced diabetic rabbits. Indian Journal of Experimental Biology, 47, 974–980.

    PubMed  Google Scholar 

  38. Sabu, M. C., & Subburaju, T. (2002). Effect of Cassia auriculata Linn. on serum glucose utilization by isolated rat hemidiaphragm. Journal of Ethnopharmacology, 80, 203–206.

    Article  PubMed  CAS  Google Scholar 

  39. Garber, A. J. (2002). Attenuating CV risk factors in patients with diabetes: Clinical evidence to clinical practice. Diabetes, Obesity & Metabolism, 4, S5–S12.

    Article  CAS  Google Scholar 

  40. Kumar, R. S., Ponmozhi, M., Viswanathan, P., & Nalini, N. (2002). Effect of Cassia auriculata leaf extract on lipids in rats with alcoholic liver injury. Asia Pacific Journal of Clinical Nutrition, 11, 157–163.

    Article  PubMed  Google Scholar 

  41. Goldberg, I. J. (2001). Diabetic dyslipidemia: Causes and consequences. Journal of Clinical Endocrinology and Metabolism, 86, 965–971.

    Article  PubMed  CAS  Google Scholar 

  42. Bainton, D., Miller, N. E., Bolton, C. H., Yarnell, J. W., Sweetnam, P. M., Baker, I. A., et al. (1992). Plasma triglycerides and high density lipoprotein cholesterol as predictors of ischemic heart disease in British man. The Caerphilly and Speedwell Collaborative Heart Disease Studies. British Heart Journal, 68, 60–66.

    Article  PubMed  CAS  Google Scholar 

  43. Bahl, V. K., Vaswani, M., Thatai, D., & Wasir, H. S. (1994). Plasma levels of apolipoprotein A-1 and B in Indian patients with angiographically defined coronary artery disease. International Journal of Cardiology, 46, 143–149.

    Article  PubMed  CAS  Google Scholar 

  44. Rosen, P., Nawroth, P. P., King, G., Moller, W., Tritschler, H. J., & Packer, L. (2001). The role of oxidative stress in the onset and progression of diabetes and its complications: A summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes/Metabolism Research and Reviews, 17, 189–212.

    Article  PubMed  CAS  Google Scholar 

  45. Williams, S. B., Goldfine, A. B., Timimi, F. K., Ting, H. H., Roddy, M. A., Simonson, D. C., et al. (1998). Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation, 97, 1695–1701.

    PubMed  CAS  Google Scholar 

  46. De Vriese, A. S., Verbeuren, T. J., Van de Voorde, J., Lameire, N. H., & Vanhoutte, P. M. (2000). Endothelial dysfunction in diabetes. British Journal of Pharmacology, 130, 963–974.

    Article  PubMed  Google Scholar 

  47. Calles-Escandon, J., & Cipolla, M. (2001). Diabetes and endothelial dysfunction: A clinical perspective. Endocrine Reviews, 22, 36–52.

    Article  PubMed  CAS  Google Scholar 

  48. de Villiers, W. J., & Smart, E. J. (1999). Macrophage scavenger receptors and foam cell formation. Journal of Leukocyte Biology, 66, 40–46.

    Google Scholar 

  49. Kauser, K., Da Cunha, V., Fitch, R., Mallari, C., & Rubanyi, G. M. (2000). Role of endogenous nitric oxide in progression of atherosclerosis in apolipoprotein E-deficient mice. American Journal of Physiology. Heart and Circulatory Physiology, 278, H1679–H1685.

    PubMed  CAS  Google Scholar 

  50. Otsuki, M., Hashimoto, K., Morimoto, Y., Kishimoto, T., & Kasayama, S. (1997). Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDM patients. Diabetes, 46, 2096–2101.

    Article  PubMed  CAS  Google Scholar 

  51. Dorenkamp, M., Riad, A., Stiehl, S., Spillmann, F., Westermann, D., Du, J., et al. (2005). Protection against oxidative stress in diabetic rats: Role of angiotensin AT1 receptor and beta 1-adrenoceptor antagonism. European Journal of Pharmacology, 520, 179–187.

    Article  PubMed  CAS  Google Scholar 

  52. Murakami, H., Okazaki, M., Amagasa, H., & Oguchi, K. (2003). Increase in hepatic mRNA expression of coagulant factors in type 2 diabetic model mice. Thrombosis Research, 111, 81–87.

    Article  PubMed  CAS  Google Scholar 

  53. Ang, L., Palakodeti, V., Khalid, A., Tsimikas, S., Idrees, Z., Tran, P., et al. (2008). Elevated plasma fibrinogen and diabetes mellitus are associated with lower inhibition of platelet reactivity with Clopidogrel. Journal of the American College of Cardiology, 52, 1052–1059.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Department of Science and Technology, New Delhi (India) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Bala Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Sharma, S.B., Singh, U.R. et al. Salutary Effect of Cassia auriculata L. Leaves on Hyperglycemia-Induced Atherosclerotic Environment in Streptozotocin Rats. Cardiovasc Toxicol 11, 308–315 (2011). https://doi.org/10.1007/s12012-011-9120-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9120-4

Keywords

Navigation