Skip to main content
Log in

Relationship Between Localization of Gold Mining Areas and Hair Mercury Levels in People from Bolivar, North of Colombia

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 17 June 2011

Abstract

Mercury (Hg) is a heavy metal that, once in the environment, is bioaccumulated and biomagnified through food chain impacting ecosystems. The aim of this study was to evaluate total Hg (T-Hg) concentrations in individuals along Cauca and Magdalena Rivers in Colombia, where most gold mining activities take place. A total of 1,328 hair samples were collected and analyzed for T-Hg using atomic absorption spectroscopy. T-Hg concentrations ranged from 0.01 to 20.14 μg/g. Greatest levels were detected in La Raya (5.27 ± 0.32 μg/g), Achi (2.44 ± 0.22 μg/g), and Montecristo (2.20 ± 0.20 μg/g), places that are located near gold mines. Concentrations decreased with the distance from main mining areas. Only 0.75% of the individuals had T-Hg levels above 10 μg/g. Men had significantly higher T-Hg levels than women, and correlation analysis revealed moderately weak but significant relationships between T-Hg and weight (R = 0.111, P < 0.001), stature (R = 0.111, P < 0.001), and age (R = 0.073, P = 0.007). However, T-Hg concentrations did not vary according to fish consumption frequency. Subjective health survey showed no Hg-related signs or symptoms within studied sample. However, studies are necessary to detect neurological damage linked to the metal. Changing technologies to Hg-free mining, monitoring, and educational programs are necessary to protect health of people living near Colombian rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng Y, Liu Y, Hu H et al (2008) Mercury in soils of three agricultural experimental stations with long-term fertilization in China. Chemosphere 72:1274–1278

    Article  PubMed  CAS  Google Scholar 

  2. Sauve S, Henderson W, Allen E (2000) Solid solution partition of metals in contaminated soils: dependence of pH total metal burden and organic matter. Environ Sci Technol 34:1125–1131

    Article  CAS  Google Scholar 

  3. Shaban W, Rmalli A, Abdella A et al (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J Haz Mat 152:955–999

    Article  Google Scholar 

  4. Dorea J (2009) Studies of fish consumption as source of methylmercury should consider fish-meal-fed farmed fish and other animal foods. Environ Res 109:131–132

    Article  PubMed  CAS  Google Scholar 

  5. Islam E, Yang X, Hexen L et al (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci 8:1–13

    Google Scholar 

  6. Pacyna E, Pacyna J, Pirrone N (2001) European emissions of atmospheric mercury from anthropogenic sources. Atmos Environ 35:2987–2996

    Article  CAS  Google Scholar 

  7. Bocayuva L, Magalhães V, Malm O et al (2005) Performance on neurological development tests by riverine children with moderate mercury exposure in Amazonia. Brazil Rev Saude Publica 21:1160–1167

    Google Scholar 

  8. Moreno E, Gamarra R, Carpena R et al (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 63:1969–1973

    Article  Google Scholar 

  9. Li G, Feng X, Qiu G et al (2008) Environmental mercury contamination of an artisanal zinc smelting area in Weining County. China Environ Pollut 154:21–31

    Article  CAS  Google Scholar 

  10. Ceccatelli S, Daré E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188:301–308

    Article  PubMed  CAS  Google Scholar 

  11. Do Nascimento JL, Oliveira KR, Crespo-Lopez ME et al (2008) Methylmercury neurotoxicity & antioxidant defenses. Indian J Med Res 128:373–382

    PubMed  CAS  Google Scholar 

  12. Pinheiro T, Oikawa J, Vieira M et al (2006) Comparative study of human exposure to mercury in riverside communities in the Amazon region. Braz J Med Biol Res 39:411–414

    Article  PubMed  CAS  Google Scholar 

  13. Olivero J, Johnson B, Arguello E (2002) Human exposure tomercury in San Jorge river basin, Colombia (South America). Sci Total Environ 289:41–47

    Article  PubMed  CAS  Google Scholar 

  14. Balshaw S, Edwards J, Daughtry B et al (2007) Mercury in seafood: mechanisms of accumulation and consequences for consumer health. Rev Environ Health 22:91–113

    PubMed  CAS  Google Scholar 

  15. Jedrychowski W, Perera F, Jankowski J et al (2007) Fish consumption in pregnancy, cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of life Krakow epidemiologic study. Environ Int 33:1057–1062

    Article  PubMed  Google Scholar 

  16. Pereira E, Abreu S, Coelho J et al (2006) Seasonal fluctuations of tissue mercury contents in the European shore crab Carcinus maenas from low and high contamination areas (Ria de Aveiro, Portugal). Mar Pollut Bull 52:1450–1457

    Article  PubMed  CAS  Google Scholar 

  17. Karouna-Renier NK, Snyder RA, Allison Wagner JG et al (2007) Accumulation of organic and inorganic contaminants in shellfish collected in estuarine waters near Pensacola, Florida: contamination profiles and risks to human consumers. Environ Pollut 145:474–488

    Article  PubMed  CAS  Google Scholar 

  18. Duchesne JF, Lévesque BB, Gauvin D et al (2004) Estimating the mercury exposure dose in a population of migratory bird hunters in the St. Lawrence River region, Québec, Canada. Environ Res 95:207–214

    Article  PubMed  CAS  Google Scholar 

  19. Falandysz J (1994) Some toxic and trace metals in big game hunted in the northern part of Poland in 1987–1991. Sci Total Environ 141:59–73

    Article  PubMed  CAS  Google Scholar 

  20. Falandysz J, Jedrusiak A, Lipka K et al (2004) Mercury in wild mushrooms and underlying soil substrate from Koszalin, North-central Poland. Chemosphere 54:461–466

    Article  PubMed  CAS  Google Scholar 

  21. Zheng N, Wang Q, Zheng D (2007) Mercury contamination and health risk to crops around the zinc smelting plant in Huludao City, northeastern China. Environ Geochem Health 29:385–393

    Article  PubMed  CAS  Google Scholar 

  22. Barbosa AC, Jardim W, Dórea JG et al (2001) Hair mercury speciation as a function of gender, age, and body mass index in inhabitants of the Negro River basin, Amazon. Brazil Arch Environ Contam Toxicol 40:439–444

    Article  CAS  Google Scholar 

  23. Grandjean P, Budtz-Jørgensen E, White RF et al (1999) Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am J Epidemiol 150:301–305

    Article  PubMed  CAS  Google Scholar 

  24. Myers GJ, Davidson PW, Cox C et al (2000) Twenty-seven years studying the human neurotoxicity of methylmercury exposure. Environ Res 83:275–285

    Article  PubMed  CAS  Google Scholar 

  25. NRC (2000) Mercury. National Research Council, Washington

  26. Lebel J, Mergler D, Branches F et al (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ Res 79:20–32

    Article  PubMed  CAS  Google Scholar 

  27. Yokoo EM, Valente JG, Sichieri R et al (2001) Validation and calibration of mercury intake through self-referred fish consumption in riverine populations in Pantanal Mato-grossense. Brazil Environ Res 86:88–93

    CAS  Google Scholar 

  28. Yokoo EM, Valente JG, Grattan L et al (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environ Health 2:8

    Article  PubMed  Google Scholar 

  29. Barbieri FL, Cournil A, Gardon J (2009) Int J Environ Health Res 19:267–277

    Article  PubMed  CAS  Google Scholar 

  30. Paruchuri Y, Siuniak A, Johnson N et al (2010) Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana's Upper East region. Sci Total Environ 408:6079–6085

    Article  PubMed  CAS  Google Scholar 

  31. Bose-O'Reilly S, Lettmeier B, Gothe RM et al (2008) Mercury exposure as a serious health hazard for children in gold mining areas. Environ Res 107:89–97

    Article  PubMed  Google Scholar 

  32. van Straaten P (2000) Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe. Sci Total Environ 259:105–113

    Article  PubMed  Google Scholar 

  33. Lacerda LD, Salomons W (1998) Mercury from gold and silver mining: a chemical time bomb? Springer, Berlin, p 146

    Book  Google Scholar 

  34. Lebel J, Roulet M, Mergler D et al (1997) Fish diet and mercury exposure in riparian Amazonian population. Water Air Soil Pollut 97:31–44

    CAS  Google Scholar 

  35. Akagi H, Malm O, Branches FJP et al (1995) Human exposure to mercury due to goldmining in the Tapajos river basin, Amazon, Brazil: speciation of mercury in human hair, blood, urine. Water Air Soil Pollut 80:85–94

    Article  CAS  Google Scholar 

  36. Akagi H, Malm O, Kinjo Y et al (1995) Methylmercury pollution in Amazon, Brazil. Sci Total Environ 175:85–95

    Article  CAS  Google Scholar 

  37. Malm O, Branches FJP, Akagi H et al (1995) Mercury and methylmercury in fish and human hair from Tapajos River Basin, Brazil. Sci Total Environ 175:127–140

    Article  CAS  Google Scholar 

  38. Malm O, Pfeiffer CW, Souza MMC et al (1990) Mercury pollution due to gold mining in the Madeira River Basin, Brazil. Ambio 19:11–15

    Google Scholar 

  39. Cleary D, Thornton I, Brown N et al (1994) Mercury in Brazil. Nature 369:613–614

    Article  Google Scholar 

  40. Hylander LD, Silva CE, Oliviera LJ et al (1994) Mercury levels in the Alto Pantanal: a screening study. Ambio 23:78–84

    Google Scholar 

  41. Pfeiffer WC, Lacerda LD, Salomons W et al (1993) Environmental fate of mercury from gold mining in the Brazilian Amazon. Environ Rev 1:26–37

    Article  CAS  Google Scholar 

  42. Pfeiffer WC, Malm O, Souza CM et al (1991) Mercury in the Madeira River Ecosystem, Rodonia. Brazil For Ecol Manag 38:239–245

    Article  Google Scholar 

  43. UPME (Unidad de Planeación Minera Energética) (2001) Estadísticas minero energéticas. Bogotá. Edición No. 13

  44. Olivero J, Johnson B (2002) El lado gris de la minería del oro: La contaminación con mercurio en el norte de Colombia, 1st edn. Universidad de Cartagena, Cartagena, Alpha impresiones, pp 27

  45. Barbosa C, Boischio AA, East GA et al (1995) Mercury contamination in the Brazilian Amazon. Environmental and occupational aspects. Water Air Soil Pollut 80:109–121

    Article  CAS  Google Scholar 

  46. Olivero J, Mendonza C, Mestre J (1995) Hair mercury levels in different occupational groups in a gold mining zone in the north of Colombia. Rev Saúde Pública 29:376–379

    Article  PubMed  CAS  Google Scholar 

  47. Alaska Division of Public Health (DPH) (2002) Mercury in hair monitoring program. Instructions for obtaining hair sample. Alaska Division of Public Health, Anchorage, Alaska

  48. Sholupov S, Pogarev S, Ryzhov V et al (2004) Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Proces Technol 85:475–485

    Article  Google Scholar 

  49. Williams TM, Apostol AN, Miranda CR (2000) Assessment by hair analysis of mercury exposure among mining impacted communities of Mindanao and Palawan, The Philippines. Environ Geochem Health 22:19–31

    Article  CAS  Google Scholar 

  50. McDowell MA, Dillon CF, Osterloh J et al (2004) Hair mercury levels in US children and women of childbearing age: reference range data from NHANES 1999–2000. Environ Health Perspect 112:1165–1171

    Article  PubMed  CAS  Google Scholar 

  51. Counter SA, Buchanan LH, Ortega F (2005) Mercury levels in urine and hair of Children in an Andean gold-mining settlement. Int J Occup Environ Health 11:132–137

    PubMed  CAS  Google Scholar 

  52. Legrand M, Passos CJ, Mergler D et al (2005) Biomonitoring of mercury exposure with single human hair strand. Environ Sci Technol 39:4594–4598

    Article  PubMed  CAS  Google Scholar 

  53. USEPA (US Environmental Protection Agency, Office of Science and Technology, Office of Water) (2005) Water quality criterion for the protection of human health: methylmercury. Available at http://www.epa.gov/waterscience/criteria/methylmercury/document. Accessed 29 June 2005

  54. Berzas Nevado JJ, Martín-Doimeadios RC, Guzmán Bernardo FJ et al (2010) Mercury in the Tapajós River basin, Brazilian Amazon: a review. Environ Int 36:593–608

    Article  PubMed  CAS  Google Scholar 

  55. Akagi H, Naganuma A (2000) Human exposure to mercury and the accumulation of methylmercury that is associated with gold mining in the Amazon Basin. Brazil J Health Sci 46:323–328

    Article  CAS  Google Scholar 

  56. Ikingura JR, Akagi H (1996) Monitoring of fish and human exposure to mercury due to gold mining in the Lake Victoria goldfields, Tanzania. Sci Total Environ 191:59–68

    Article  PubMed  CAS  Google Scholar 

  57. Hacon S, Barrocas PR, Vasconcellos AC et al (2008) An overview of mercury contamination research in the Amazon basin with an emphasis on Brazil. Cad Saúde Pública 24:1479–1492

    Article  PubMed  Google Scholar 

  58. Harada M, Nakanishib J, Yasodab E et al (2001) Mercury pollution in the Tapajos River basin, Amazon: Mercury level of head hair and health effects. Mercury Environ Int 27:285–290

    Article  CAS  Google Scholar 

  59. Passos CJS, Mergler D (2008) Human mercury exposure and adverse health effects in the Amazon: a review. Cad Saúde Pública 24:s503–s520

    Article  PubMed  Google Scholar 

  60. Storelli MM, Marcotrigano GO (2000) Fish for human consumption: risk of contamination by mercury. Food Addit Contam 17:1007–1011

    Article  PubMed  CAS  Google Scholar 

  61. Cernichiari E, Brewer R, Myers GJ et al (1995) Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neurotoxicology 16:705–710

    PubMed  CAS  Google Scholar 

  62. Dolbec J, Mergler D, Larribe F et al (2001) Sequential analysis of hair mercury levels in relation to fish diet of an Amazonian population, Brazil. Sci Total Environ 271:87–97

    Article  PubMed  CAS  Google Scholar 

  63. Pellizzari ED, Fernando R, Cramer GM et al (1999) Analysis of mercury in hair of EPA region V population. Expo Anal Environ Epidemiol 9:393–401

    Article  CAS  Google Scholar 

  64. Díez S, Montuori P, Pagano A et al (2008) Hair mercury levels in an urban population from southern Italy: Fish consumption as a determinant of exposure. Environ Int 34:162–167

    Article  PubMed  Google Scholar 

  65. Kosatsky T, Przybysz R, Armstrong B (2000) Mercury exposure in Montrealers who eat St. Lawrence River sportfish. Environ Res 84:36–43

    Article  PubMed  CAS  Google Scholar 

  66. Mortada WI, Sobh MA, El-Deferawy MM et al (2002) Reference intervals of cadmium, lead, & mercury in blood, urine, hair, and hails amory residents in Mansoura City, Nile Delta, Egypt. Env Res 90:104–110

    Article  CAS  Google Scholar 

  67. Babi D, Vasjari UM, Celo V et al (2000) Some results on Hg content in hair in different populations in Albania. Sci Total Environ 259:55–60

    Article  PubMed  CAS  Google Scholar 

  68. WHO (1990) Programme on chemical safety, environmental health criteria 101: methymercury. World Health Organization, Geneva, Switzerland

  69. Malm O, Dórea JG, Barbosa AC et al (2010) Sequential hair mercury in mothers and children from a traditional riverine population of the Rio Tapajós, Amazonia: seasonal changes. Environ Res 110:705–709

    Article  PubMed  CAS  Google Scholar 

  70. Bahia MO, Corvelo TC, Mergler D et al (2004) Environmental biomonitoring using cytogenetic endpoints in a population exposed to mercury in the Brazilian Amazon. Environ Mol Mutagen 44:346–349

    Article  CAS  Google Scholar 

  71. Ng DK, Chan CH, Soo MT et al (2007) Low-level chronic mercury exposure in children and adolescents: meta-analysis. Pediatr Int 49:80–87

    Article  PubMed  Google Scholar 

  72. Donato DB, Nichols O, Possingham H et al (2007) A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ Int 33:974–984

    Article  PubMed  CAS  Google Scholar 

  73. Wu ML, Tsai WJ, Ger J et al (2001) Cholestatic hepatitis caused by acute gold potassium cyanide poisoning. J Toxicol Clin Toxicol 39:739–743

    Article  PubMed  CAS  Google Scholar 

  74. Canumalla AJ, Al-Zamil N, Phillips M et al (2001) Redox and ligand exchange reactions of potential gold(I) and gold(III)-cyanide metabolites under biomimetic conditions. J Inorg Biochem 85:67–76

    Article  PubMed  CAS  Google Scholar 

  75. Heath JC, Banna KM, Reed MN et al (2010) Dietary selenium protects against selected signs of aging and methylmercury exposure. Neurotoxicology 31:169–179

    Article  PubMed  CAS  Google Scholar 

  76. Lima P, Sarkis JE, Shihomatsu HM et al (2005) Mercury and selenium concentrations in fish samples from Cachoeira do Piriá Municipality, ParáState, Brazil. Environ Res 97:236–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the University of Cartagena (Cartagena), Colciencias (Bogotá), Colombia (grant 1107-04-16346). The authors thank to Miriam Gutierrez (Universidad Nacional de Colombia), Jorge Ropero, William Ortiz, Nivis Torres, Fredyc Young, Paola Vera, and Ruben Agresot.

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Olivero-Verbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivero-Verbel, J., Caballero-Gallardo, K. & Negrete-Marrugo, J. Relationship Between Localization of Gold Mining Areas and Hair Mercury Levels in People from Bolivar, North of Colombia. Biol Trace Elem Res 144, 118–132 (2011). https://doi.org/10.1007/s12011-011-9046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9046-5

Keywords

Navigation