Skip to main content
Log in

The Co-effect of Vanadium and Fermented Mushroom of Coprinus comatus on Glycaemic Metabolism

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of fermented mushroom of Coprinus comatus rich in vanadium (CCRV) on glycaemic metabolism was studied in this paper. Alloxan-induced hyperglycemic mice were used in this study. The insulin secretion and glycogen synthesis of the mice were analyzed. At the same time, the gluconeogenesis of the normal mice was also determined. The alloxan-damaged pancreatic β-cells of the mice were also studied in this paper. After the mice were administered (i.g.) with CCRV, the level of insulin secretion and glycogen synthesis of alloxan-induced hyperglycemic mice elevated (p < 0.05, p < 0.01) and the gluconeogenesis of the normal mice was inhibited (p < 0.01). Also, the alloxan-damaged pancreatic β-cells of the mice were partly recovered gradually after the mice were administered (i.g.) with CCRV 15 days later. These may account for the causes of CCRV-induced significant decreases of the blood glucose in hyperglycemic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lakatos B, Szentmihalyi K, Vinkler P, Balla J, Balla G (2004) The role of essential metal ions in the human organism and their oral supplementation to the human body in deficiency states. Orv Hetil 145:1315–1319 (in Hungarian)

    PubMed  Google Scholar 

  2. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26:268–298

    Article  PubMed  CAS  Google Scholar 

  3. McClung JP, Scrimgeour AG (2005) Zinc: an essential trace element with potential benefits to soldiers. Mil Med 170:1048–1052

    PubMed  Google Scholar 

  4. Luty-Frackiewicz A (2005) The role of selenium in cancer and viral infection prevention. Int J Occup Med Environ Health 18:305–311

    PubMed  Google Scholar 

  5. Gil J, Miralpeix M, Carreras J, Bartrons R (1998) Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem 263:1868–1871

    Google Scholar 

  6. Shechter Y (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 3:9:1–5

    Article  PubMed  CAS  Google Scholar 

  7. Lu B, Ennis D, Lai R, Bogdanovic E (2002) Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+-5) to vanadyl (+-4). J Biol Chem 276:35589–35598

    Article  Google Scholar 

  8. Semiz S, Orvig C, McNeill JH (2001) Effects of diabetes, vanadium, and insulin on glycogen synthase activation in Wistar rats. Mol Cell Biochem 231:23–35

    Article  Google Scholar 

  9. Goldfine AB, Simonson DC, Folli F, Patti CR, Kahn ME (1995) In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 153:217–231

    Article  PubMed  CAS  Google Scholar 

  10. Domingo JL (2002) Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res 88:97–112

    Article  PubMed  CAS  Google Scholar 

  11. Preet, Gupta BL, Yadava PK, Baquer NZ (2005) Efficacy of lower doses of vanadium in restoring altered glucose metabolism and antioxidant status in diabetic rat lenses. J Biosci 30:221–230

    Article  PubMed  CAS  Google Scholar 

  12. Chunchao H, Junhua Y, Yingzi W, Lingjun L (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol 20:191–196

    Article  Google Scholar 

  13. Battell ML, Yuen VG, Verma S, McNeill JH (1999) Other models of type I diabetes. In: JohnMcNeill H (ed) Experimental models of diabetes. CRC, USA, pp 219–229

    Google Scholar 

  14. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI (1992) Increased rate of gluconeogenesis in type-II diabetes-mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 9:0:1323–1327

    Article  PubMed  CAS  Google Scholar 

  15. You Y, Lin Z (2003) Antioxidant effect of Ganoderma polysaccharide peptide. Acta Pharm Sinica 38:85–88

    CAS  Google Scholar 

  16. Anderson L, Dinesen B, Jorgenson P, Poulsen F, Roder M (1993) Enzyme immunoassay for intact human insulin in serum or plasma. Clin Chem 38:578

    Google Scholar 

  17. Bergmeyer HU (1974) Methods of Enzymatic Analysis. In: Bergmeyer HU (ed) Academic Press, New York, pp 11–17

  18. Duncan DB (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:164–176

    Article  Google Scholar 

  19. Kalac P, Niznamska M, Bevilaqua D, Staskova I (1996) Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci Total Environ 1:77:251–258

    Article  PubMed  CAS  Google Scholar 

  20. Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  CAS  Google Scholar 

  21. Malinowska E, Szefer P, Falandaysz J (2006) Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem 84:405–416

    Article  Google Scholar 

  22. Gu Y, Ju Y (1996) Food and officinal mushroom—Coprinus comatus. Vegetable 9 13:10 (in Chinese)

    Google Scholar 

  23. Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22:2–13

    Article  PubMed  CAS  Google Scholar 

  24. Paquet MR, Romanek RJ, Sargeant RJ (1992) Vanadate induces the recruitment of GLUT-4 glucose transporter to the plasma membrane of rat adipocytes. Mol Cell Biochem 109:149–1559

    Article  PubMed  CAS  Google Scholar 

  25. Clausen T, Andersen TL, Sturup-Johansen M, Petkova O (1981) The relationship between the transport of glucose and cations across cell membranes in isolated tissues. XI. The effect of vanadate on 45Caefflux and sugar transport in adipose tissue and skeletal muscle. Biochim Biophys Acta 646:261–267

    Article  PubMed  CAS  Google Scholar 

  26. Carey JO, Azevedo JL Jr, Morris PG, Pories WJ, Dohm GL (1995) Okadaic acid, vanadate, and phenylarsine oxide stimulate 2-deoxyglucose transport in insulin-resistant human skeletal muscle. Diabetes 44:682–688

    Article  PubMed  CAS  Google Scholar 

  27. Cortright RN, Azevedo JL Jr, Hickey MS, Tapscott EB, Dohm GL (1997) Vanadate stimulation of 2-deoxyglucose transport is not mediated by PI 3-kinase in human skeletal muscle. Biochim Biophys Acta 1358:300–306

    Article  PubMed  CAS  Google Scholar 

  28. Cuncic C, Desmarais S, Detich N, Tracey AS, Gresser MJ, Ramachandran C et al (1999) Bis(N,N-dimethylhydroxamido) hydroxooxovanadate inhibition of protein tyrosine phosphatase activity in intact cells: comparison with vanadate. Biochem Pharmacol 5:8:1859–1867

    Article  PubMed  CAS  Google Scholar 

  29. Berger J, Hayes N, Szalkowski DM, Zhang B (1994) PI 3-kinase activation is required for insulin stimulation of glucose transport into L6 myotubes. Biochem Biophys Res Commun 05:570–576

    Article  Google Scholar 

  30. Tsiani E, Bogdanovic E, Sorisky A, Nagy L, Fantus IG (1998) Tyrosine phosphatase inhibitors, vanadate and pervanadate, stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and proteinkinase C. Diabetes 47:1676–1686

    Article  PubMed  CAS  Google Scholar 

  31. Pugazhenthi S, Khandelwal RL (1990) Insulinlike effects of vanadate on hepatic glycogen metabolism in nondiabetic and streptozocin-induced diabetic rats. Diabetes 39:821–827

    Article  PubMed  CAS  Google Scholar 

  32. Pugazhenthi S, Khandelwal RL, Angel JF (1991) Insulin-like effect of vanadate on malic enzyme and glucose-6-phosphate dehydrogenase activities in streptozotocin-induced diabetic rat liver. Biochim Biophys Acta 10:83:310–312

    PubMed  CAS  Google Scholar 

  33. Khandelwal RL, Pugazhenthi S (1995) In vivo effects of vanadate on hepatic glycogen metabolizing and lipogenic enzymes in insulin-dependent and insulin-resistant diabetic animals. Mol Cell Biochem 153:87–94

    Article  PubMed  CAS  Google Scholar 

  34. Blondel O, Simon J, Chevalier B, Portha B (1990) Impaired insulin action but normal insulin receptor activity in diabetic rat liver: effect of vanadate. Am J Physiol 25:8:E459–E467

    PubMed  CAS  Google Scholar 

  35. Boden G, Chen X, Ruiz J, van Rossum GD, Turco S (1996) Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 4:5:1130–1135

    Article  PubMed  CAS  Google Scholar 

  36. Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JC et al (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2-diabetes. J Clin Endocrinol Metab 86:1410–1417

    Article  PubMed  CAS  Google Scholar 

  37. Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80:3311–3320

    Article  PubMed  CAS  Google Scholar 

  38. Castro J, Maquedano A, Olive M (1998) Lipid synthesis in isolated rat hepatocytes: activation by insulin and vanadate and inhibition by ouabain. Biochem Int 9:413–420

    Google Scholar 

  39. Menon AS, Rau M, Ramasarma T, Crane FL (1980) Vanadate inhibits mevalonate synthesis and activates NADH oxidation in microsomes. FEBS Lett 114:139–141

    Article  PubMed  CAS  Google Scholar 

  40. Sakurai K, Katoh M, Someno K, Fujimoto Y (2001) Apoptosis and mitochondrial damage in INS-1 cells treated with alloxan. Biol Pharm Bull 24:876–882

    Article  PubMed  CAS  Google Scholar 

  41. Gold AH (1970) The effect of diabetes and insulin on liver glycogen synthetase activation. J Biol Chem 245:903–905

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchao Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, G., Han, C. The Co-effect of Vanadium and Fermented Mushroom of Coprinus comatus on Glycaemic Metabolism. Biol Trace Elem Res 124, 20–27 (2008). https://doi.org/10.1007/s12011-008-8118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8118-7

Keywords

Navigation