Skip to main content

Advertisement

Log in

The neurobiology of autism: New pieces of the puzzle

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The neurobiologic basis of autism is reviewed, with discussion of evidence from genetic, magnetic resonance imaging, neuropathology, and functional neuroimaging studies. Although autism is a behaviorally valid syndrome, it is remarkably heterogeneous and involves multiple developmental domains as well as a wide range of cognitive, language, and socioemotional functioning. Although multiple etiologies are implicated, recent advances have identified common themes in pathophysiology. Genetic factors play a primary role, based on evidence from family studies, identification of putative genes using genome-wide linkage analyses, and comorbidities with known genetic mutations. The RELN gene, which codes for an extracellular protein guiding neuronal migration, has been implicated in autism. Numerous neuropathologic changes have been described, including macroencephaly, acceleration and then deceleration in brain growth, increased neuronal packing and decreased cell size in the limbic system, and decreased Purkinje cell number in the cerebellum. Abnormalities in organization of the cortical minicolumn, representing the fundamental subunit of vertical cortical organization, may underlie the pathology of autism and result in altered thalamocortical connections, cortical disinhibition, and dysfunction of the arousal-modulating system of the brain. The role of acquired factors is speculative, with insufficient evidence to link the measles-mumps-rubella (MMR) vaccine with autism or to change immunization practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Shinnar S, Rapin I, Arnold S, et al.: Language regression in childhood. Pediatr Neurol 2001, 24:183–189.

    Article  PubMed  CAS  Google Scholar 

  2. Tuchman RF, Rapin I: Regression in pervasive developmental disorders: seizures and epileptiform electroencephalogram correlates. Pediatrics 1997, 99:560–566.

    Article  PubMed  CAS  Google Scholar 

  3. Yeargin-Allsopp M: Past and future perspectives in autism epidemiology. Mol Psychiatry 2002, 7(suppl 2):S9-S11.

    Article  PubMed  Google Scholar 

  4. Lamb JA, Moore J, Bailey A, Monaco AP: Autism: recent molecular genetic advances. Hum Mol Genet 2000, 9:861–868.

    Article  PubMed  CAS  Google Scholar 

  5. Bailey A, Le Couteur A, Gottesman I, et al.: Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995, 25:63–77.

    Article  PubMed  CAS  Google Scholar 

  6. RutterM: The Emanuel Miller Memorial Lecture 1998. Autism: two-way interplay between research and clinical work. J Child Psychol Psychiatry 1999, 40:169–188.

    Article  PubMed  CAS  Google Scholar 

  7. Pickles A, Starr E, Kazak S, et al.: Variable expression of the autism broader phenotype: findings from extended pedigrees. J Child Psychol Psychiatry 2000, 41:491–502.

    Article  PubMed  CAS  Google Scholar 

  8. Risch N, Spiker D, Lotspeich L, et al.: A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 1999, 65:493–507.

    Article  PubMed  CAS  Google Scholar 

  9. SpenceMA: The genetics of autism. Curr Opin Pediatr 2001, 13:561–565.

    Article  PubMed  CAS  Google Scholar 

  10. Murphy M, Bolton PF, Pickles A, et al.: Personality traits of the relatives of autistic probands. Psychol Med 2000, 30:1411–1424.

    Article  PubMed  CAS  Google Scholar 

  11. Constantino JN, Todd RD: Genetic structure of reciprocal social behavior. Am J Psychiatry 2000, 157:2043–2045.

    Article  PubMed  CAS  Google Scholar 

  12. Bailey A, Palferman S, Heavey L, Le Couteur A: Autism: the phenotype in relatives. J Autism Dev Disord 1998, 28:369–392.

    Article  PubMed  CAS  Google Scholar 

  13. Smalley SL, Kustanovich V, Minassian SL, et al.: Genetic linkage of attention-deficit/hyperactivity disorder on chromosome 16p13, in a region implicated in autism. Am J Hum Genet 2002, 71:959–963.

    Article  PubMed  Google Scholar 

  14. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 2001, 69:570–581.

  15. GutknechtL: Full-genome scans with autistic disorder: a review. Behav Genet 2001, 31:113–123.

    Article  PubMed  CAS  Google Scholar 

  16. Shao Y, Wolpert CM, Raiford KL, et al.: Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 2002, 114:99–105.

    Article  PubMed  Google Scholar 

  17. Licinio J, Alvarado I: Progress in the genetics of autism. Mol Psychiatry 2002, 7:229.

    Article  PubMed  CAS  Google Scholar 

  18. Yu CE, Dawson G, Munson J, et al.: Presence of large deletions in kindreds with autism. Am J Hum Genet 2002, 71:100–115.

    Article  PubMed  CAS  Google Scholar 

  19. Fisher SE, Vargha-Khadem F, Watkins KE, et al.: Localization of a gene implicated in a severe speech and language disorder. Nat Genet 1998, 18:168–170.

    Article  PubMed  CAS  Google Scholar 

  20. Folstein SE, Mankoski RE: Chromosome 7q: where autism meets language disorder?. Am J Hum Genet 2000, 67:278–281.

    Article  PubMed  CAS  Google Scholar 

  21. Warburton P, Baird G, Chen W, et al.: Support for linkage of autism and specific language impairment to 7q3 from two chromosome rearrangements involving band 7q31. Am J Med Genet 2000, 96:228–234.

    Article  PubMed  CAS  Google Scholar 

  22. Lai CS, Fisher SE, Hurst JA, et al.: A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001, 413:519–523.

    Article  PubMed  CAS  Google Scholar 

  23. Persico AM, D’Agruma L, Maiorano N, et al.: Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001, 6:150–159.

    Article  PubMed  CAS  Google Scholar 

  24. Fatemi SH, Stary JM, Halt AR, Realmuto GR: Dysregulation of reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord 2001, 31:529–535.

    Article  PubMed  CAS  Google Scholar 

  25. Petek E, Windpassinger C, Vincent JB, et al.: Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am J Hum Genet 2001, 68:848–858.

    Article  PubMed  CAS  Google Scholar 

  26. Fatemi SH, Kroll JL, Stary JM: Altered levels of Reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 2001, 12:3209–3215.

    Article  PubMed  CAS  Google Scholar 

  27. Hong SE, Shugart YY, Huang DT, et al.: Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000, 26:93–96.

    Article  PubMed  CAS  Google Scholar 

  28. Fombonne E, Chakrabarti S: No evidence for a new variant of measles-mumps-rubella-induced autism. Pediatrics 2001, 108:E58.

    Article  PubMed  CAS  Google Scholar 

  29. GillbergC: Chromosomal disorders and autism. J Autism Dev Disord 1998, 28:415–425.

    Article  PubMed  CAS  Google Scholar 

  30. Buxbaum JD, Silverman JM, Smith CJ, et al.: Association between a GABRB3 polymorphism and autism. Mol Psychiatry 2002, 7:311–0316.

    Article  PubMed  CAS  Google Scholar 

  31. Menold MM, Shao Y, Wolpert CM, et al.: Association analysis of chromosome 15 gaba receptor subunit genes in autistic disorder. J Neurogenet 2001, 15:245–259.

    Article  PubMed  CAS  Google Scholar 

  32. Martin ER, Menold MM, Wolpert CM, et al.: Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 2000, 96:43–48.

    Article  PubMed  Google Scholar 

  33. Maestrini E, Lai C, Marlow A, et al.: Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet 1999, 88:492–496.

    Article  PubMed  CAS  Google Scholar 

  34. Nurmi EL, Bradford Y, Chen Y, et al.: Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 2001, 77:105–113.

    Article  PubMed  CAS  Google Scholar 

  35. Slopien A, Rajewski A: Genetic studies in autistic disorders. Psychiatry Pol 2000, 34:435–446.

    CAS  Google Scholar 

  36. Schutz CK, Polley D, Robinson PD, et al.: Autism and the X chromosome: no linkage to microsatellite loci detected using the affected sibling pair method. Am J Med Genet 2002, 109:36–41.

    Article  PubMed  Google Scholar 

  37. Amir RE, Zoghbi HY: Rett syndrome: methyl-CpG-binding protein 2 mutations and phenotype-genotype correlations. Am J Med Genet 2000, 97:147–152.

    Article  PubMed  CAS  Google Scholar 

  38. Hammer S, Dorrani N, Dragich J, et al.: The phenotypic consequences of MECP2 mutations extend beyond Rett syndrome. Ment Retard Dev Disabil Res Rev 2002, 8:94–98.

    Article  PubMed  Google Scholar 

  39. Korvatska E, Van de WJ, Anders TF, Gershwin ME: Genetic and immunologic considerations in autism. Neurobiol Dis 2002, 9:107–125. Overview of genetic and inmunologic aspects of autism.

    Article  PubMed  CAS  Google Scholar 

  40. Kemper TL, Bauman ML: The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993, 11:175–187.

    PubMed  CAS  Google Scholar 

  41. Saitoh O, Karns CM, Courchesne E: Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 2001, 124:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  42. Courchesne E, Karns CM, Davis HR, et al.: Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57:245–254.

    PubMed  CAS  Google Scholar 

  43. CourchesneE: Abnormal early brain development in autism. Mol Psychiatry 2002, 7(suppl 2):S21-S23.

    Article  PubMed  Google Scholar 

  44. Hardan AY, Minshew NJ, Harenski K, Keshavan MS: Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry 2001, 40:666–672.

    Article  PubMed  CAS  Google Scholar 

  45. Sparks BF, Friedman SD, Shaw DW, et al.: Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59:184–192. Supportive evidence of volumetric changes in brain development in children with autism.

    PubMed  CAS  Google Scholar 

  46. Raymond GV, Bauman ML, Kemper TL: Hippocampus in autism: a Golgi analysis. Acta Neuropathol (Berl) 1996, 91:117–119.

    Article  CAS  Google Scholar 

  47. Hashimoto T, Tayama M, Murakawa K, et al.: Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995, 25:1–18.

    Article  PubMed  CAS  Google Scholar 

  48. Hardan AY, Minshew NJ, Keshavan MS: Corpus callosum size in autism. Neurology 2000, 55:1033–1036.

    PubMed  CAS  Google Scholar 

  49. Fidler DJ, Bailey JN, Smalley SL: Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol 2000, 42:737–740.

    Article  PubMed  CAS  Google Scholar 

  50. Fombonne E, Roge B, Claverie J, et al.: Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999, 29:113–119.

    Article  PubMed  CAS  Google Scholar 

  51. Lainhart JE, Piven J, Wzorek M, et al.: Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 1997, 36:282–290.

    Article  PubMed  CAS  Google Scholar 

  52. Courchesne E, Karns CM, Davis HR, et al.: Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57:245–254. This study shows evidence of abnormal regulation of brain growth, with early overgrowth and later abnormal slow growth.

    PubMed  CAS  Google Scholar 

  53. Lemons JA, Schreiner RL, Gresham EL: Relationship of brain weight to head circumference in early infancy. Hum Biol 1981, 53:351–354.

    PubMed  CAS  Google Scholar 

  54. Aylward EH, Minshew NJ, Field K, et al.: Effects of age on brain volume and head circumference in autism. Neurology 2002, 59:175–183. Supportive evidence for an abnormal pattern of brain development early in life and during adolescence in autism.

    PubMed  CAS  Google Scholar 

  55. Carper RA, Courchesne E: Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 2000, 123(Pt 4):836–844. This study shows evidence of concurrent abnormalities in both the frontal lobe and the cerebellum.

    Article  PubMed  Google Scholar 

  56. Carper R, Moses P, Tigue Z, Courchesne E: Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002, 16:1038. Evaluation of volumetric variations in different brain regions. Mechanisms that might account for early hyperplasia are discussed.

    Article  PubMed  Google Scholar 

  57. Saitoh O, Karns CM, Courchesne E: Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 2001, 124:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  58. Egaas B, Courchesne E, Saitoh O: Reduced size of corpus callosum in autism. Arch Neurol 1995, 52:794–801.

    PubMed  CAS  Google Scholar 

  59. Muller RA, Pierce K, Ambrose JB, et al.: Atypical patterns of cerebral motor activation in autism: a functional magnetic resonance study. Biol Psychiatry 2001, 49:665–676.

    Article  PubMed  CAS  Google Scholar 

  60. Pierce K, Muller RA, Ambrose J, et al.: Face processing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain 2001, 124:2059–2073.

    Article  PubMed  CAS  Google Scholar 

  61. Critchley HD, Daly EM, Bullmore ET, et al.: The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 2000, 123(Pt 11):2203–2212.

    Article  PubMed  Google Scholar 

  62. Casey BJ, Giedd JN, Thomas KM: Structural and functional brain development and its relation to cognitive development. Biol Psychol 2000, 54:241–257.

    Article  PubMed  CAS  Google Scholar 

  63. Nelson KB, Grether JK, Croen LA, et al.: Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 2001, 49:597–606. Evaluation of expression of neuropeptides and neurotrophins in peripheral blood in children with autism drawn in the first days of life.

    Article  PubMed  CAS  Google Scholar 

  64. Kemper TL, Bauman M: Neuropathology of infantile autism. J Neuropathol Exp Neurol 1998, 57:645–652.

    Article  PubMed  CAS  Google Scholar 

  65. Bauman M, Kemper TL: Histoanatomic observations of the brain in early infantile autism. Neurology 1985, 35:866–874.

    PubMed  CAS  Google Scholar 

  66. Kemper TL, Bauman ML: Neuropathology of infantile autism. Mol Psychiatry 2002, 7(suppl 2):S12-S13.

    Article  PubMed  Google Scholar 

  67. Casanova MF, Buxhoeveden DP, Switala AE, Roy E: Minicolumnar pathology in autism. Neurology 2002, 58:428–432. Description of differences between brain of autistic patients and control patients in the number and structure of minicolumns

    PubMed  Google Scholar 

  68. Casanova MF, Buxhoeveden DP, Switala AE, Roy E: Asperger’s syndrome and cortical neuropathology. J Child Neurol 2002, 17:142–145.

    Article  PubMed  Google Scholar 

  69. Kornack DR, Rakic P: Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 1995, 15:311–321.

    Article  PubMed  CAS  Google Scholar 

  70. Buxhoeveden DP, Casanova MF: The minicolumn hypothesis in neuroscience. Brain 2002, 125:935–951. Review of the concept of minicolumn as an anatomic and functional unit.

    Article  PubMed  Google Scholar 

  71. Casanova MF, Buxhoeveden DP, Cohen M, et al.: Minicolumnar pathology in dyslexia. Ann Neurol 2002, 52:108–110.

    Article  PubMed  Google Scholar 

  72. PickettJ: Current investigations in autism brain tissue research. J Autism Dev Disord 2001, 31:521–527. Update on current autism brain research efforts.

    Article  PubMed  CAS  Google Scholar 

  73. Blatt GJ, Fitzgerald CM, Guptill JT, et al.: Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 2001, 31:537–543.

    Article  PubMed  CAS  Google Scholar 

  74. Junaid MA, Pullarkat RK: Proteomic approach for the elucidation of biological defects in autism. J Autism Dev Disord 2001, 31:557–560.

    Article  PubMed  CAS  Google Scholar 

  75. Whitaker-AzmitiaPM: Serotonin and brain development: role in human developmental diseases. Brain Res Bull 2001, 56:479–485. Overview of the role of serotonin in prenatal and post-natal brain development.

    Article  PubMed  CAS  Google Scholar 

  76. Barreto MedeirosJM, Cabral FilhoJE, De SouzaSL, et al.: Early malnourished rats are not affected by anorexia induced by a selective serotonin reuptake inhibitor in adult life. Nutr Neurosci 2002, 5:211–214.

    Article  PubMed  CAS  Google Scholar 

  77. Chugani DC, Muzik O, Behen M, et al.: Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999, 45:287–295.

    Article  PubMed  CAS  Google Scholar 

  78. Tordjman S, Gutknecht L, Carlier M, et al.: Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 2001, 6:434–439.

    Article  PubMed  CAS  Google Scholar 

  79. CarlssonML: Hypothesis: is infantile autism a hypoglutamatergic disorder? Relevance of glutamate-serotonin interactions for pharmacotherapy. J Neural Transm 1998, 105:525–535.

    Article  PubMed  CAS  Google Scholar 

  80. Donovan SL, Mamounas LA, Andrews AM, et al.: GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci 2002, 22:3543–3552.

    PubMed  CAS  Google Scholar 

  81. Blue ME, Erzurumlu RS, Jhaveri S: A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb Cortex 1991, 1:380–389.

    Article  PubMed  CAS  Google Scholar 

  82. Bennett-Clarke CA, Leslie MJ, Lane RD, Rhoades RW: Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat’s somatosensory cortex. J Neurosci 1994, 14:7594–7607.

    PubMed  CAS  Google Scholar 

  83. Cases O, Vitalis T, Seif I, et al.: Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 1996, 16:297–307.

    Article  PubMed  CAS  Google Scholar 

  84. Lauder JM, Sze PY, Krebs H: Maternal influences on tryptophan hydroxylase activity in embryonic rat brain. Dev Neurosci 1981, 4:291–295.

    PubMed  CAS  Google Scholar 

  85. Lauder JM, Wallace JA, Krebs H: Roles for serotonin in neuroembryogenesis. Adv Exp Med Biol 1981, 133:477–506.

    PubMed  CAS  Google Scholar 

  86. Martineau J, Barthelemy C, Jouve J, et al.: Monoamines (serotonin and catecholamines) and their derivatives in infantile autism: age-related changes and drug effects. Dev Med Child Neurol 1992, 34:593–603.

    Article  PubMed  CAS  Google Scholar 

  87. Chugani DC, Muzik O, Rothermel R, et al.: Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 1997, 42:666–669.

    Article  PubMed  CAS  Google Scholar 

  88. ChuganiDC: Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 2002, 7(suppl 2):S16-S17.

    Article  PubMed  Google Scholar 

  89. Jamain S, Quach H, Quintana-Murci L, et al.: Y chromosome haplogroups in autistic subjects. Mol Psychiatry 2002, 7:217–219.

    Article  PubMed  CAS  Google Scholar 

  90. Roper SN, Eisenschenk S, King MA: Reduced density of parvalbumin-and calbindin D28-immunoreactive neurons in experimental cortical dysplasia. Epilepsy Res 1999, 37:63–71.

    Article  PubMed  CAS  Google Scholar 

  91. Benes FM, McSparren J, Bird ED, et al.: Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991, 48:996–1001.

    PubMed  CAS  Google Scholar 

  92. Leckman JF, Riddle MA: Tourette’s syndrome: when habit-forming systems form habits of their own? Neuron 2000, 28:349–354.

    Article  PubMed  CAS  Google Scholar 

  93. Stubbs EG, Ash E, Williams CP: Autism and congenital cytomegalovirus. J Autism Dev Disord 1984, 14:183–189.

    Article  PubMed  CAS  Google Scholar 

  94. GillbergIC: Autistic syndrome with onset at age 31 years: herpes encephalitis as a possible model for childhood autism. Dev Med Child Neurol 1991, 33:920–924.

    Article  PubMed  CAS  Google Scholar 

  95. Van GentT, Heijnen CJ, Treffers PD: Autism and the immune system. J Child Psychol Psychiatry 1997, 38:337–349.

    Article  PubMed  Google Scholar 

  96. FombonneE: The epidemiology of autism: a review. Psychol Med 1999, 29:769–786.

    Article  PubMed  CAS  Google Scholar 

  97. O’Leary JJ, Uhlmann V, Wakefield AJ: Measles virus and autism. Lancet 2000, 356:772.

    Article  PubMed  CAS  Google Scholar 

  98. Peltola H, Patja A, Leinikki P, et al.: No evidence for measles, mumps, and rubella vaccine-associated inflammatory bowel disease or autism in a 14-year prospective study. Lancet 1998, 351:1327–1328.

    Article  PubMed  CAS  Google Scholar 

  99. Taylor B, Miller E, Farrington CP, et al.: Autism and measles, mumps, and rubella vaccine: no epidemiological evidence for a causal association. Lancet 1999, 353:2026–2029.

    Article  PubMed  CAS  Google Scholar 

  100. Dales L, Hammer SJ, Smith NJ: Time trends in autism and in MMR immunization coverage in California. JAMA 2001, 285:1183–1185.

    Article  PubMed  CAS  Google Scholar 

  101. Kaye JA, Mar Melero-Montes M, Jick H: Mumps, measles, and rubella vaccine and the incidence of autism recorded by general practitioners: a time trend analysis. BMJ 2001, 322:460–463.

    Article  PubMed  CAS  Google Scholar 

  102. Halsey NA, Hyman SL: Measles-mumps-rubella vaccine and autistic spectrum disorder: report from the New Challenges in Childhood Immunizations Conference convened in Oak Brook, Illinois, June 12–13, 2000. Pediatrics 2001, 107:E84. Conclusions from American Academy of Pediatrics Consensus Development Conference entitled, "New Challenges in Childhood Inmunizations." Available evidence does not support the hypothesis that the measles-mumps-rubella vaccine causes autism.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, M.T., Pearl, P.L. The neurobiology of autism: New pieces of the puzzle. Curr Neurol Neurosci Rep 3, 149–156 (2003). https://doi.org/10.1007/s11910-003-0067-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-003-0067-0

Keywords

Navigation