Skip to main content

Advertisement

Log in

Microvascular Dysfunction in the Context of Diabetic Neuropathy

  • Microvascular Complications—Neuropathy (D Ziegler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Microvascular dysfunction in diabetes plays a crucial role in the development of diabetic complications. The skin, as one of the most accessible organs, serves as a model for the investigation of microvascular dysfunction. Several non-invasive, mostly laser-Doppler-based methods have been developed lately to assess microvascular function in the skin. Microvascular functional changes occur even in the prediabetic state and become more complex with overt diabetes, being exacerbated by the presence of peripheral and/or autonomic diabetic neuropathy. The present article aims at shedding light on the implication of endothelial and neurovascular dysfunction in microvascular changes in diabetes, highlighting the contribution of different forms of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care. 2005;28:2130–5.

    Article  PubMed  Google Scholar 

  2. Hamdy O, Abou-Elenin K, LoGerfo FW, Horton ES, Veves A. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care. 2001;24:344–9.

    Article  CAS  PubMed  Google Scholar 

  3. Stevens MJ, Feldman EL, Greene DA. The aetiology of diabetic neuropathy: the combined roles of metabolic and vascular defects. Diabet Med. 1995;12:566–79.

    Article  CAS  PubMed  Google Scholar 

  4. Tesfaye S, Malik R, Ward JD. Vascular factors in diabetic neuropathy. Diabetologia. 1994;37:847–54.

    Article  CAS  PubMed  Google Scholar 

  5. Pham HT, Economides PA, Veves A. The role of endothelial function on the foot. Microcirculation and wound healing in patients with diabetes. Clin Podiatr Med Surg. 1998;15:85–93.

    CAS  PubMed  Google Scholar 

  6. Stansberry KB, Peppard HR, Babyak LM, Popp G, McNitt PM, Vinik AI. Primary nociceptive afferents mediate the blood flow dysfunction in non-glabrous (hairy) skin of type 2 diabetes: a new model for the pathogenesis of microvascular dysfunction. Diabetes Care. 1999;22:1549–54. This paper provides an excellent overview on neurovascular regulation of the skin.

    Article  CAS  PubMed  Google Scholar 

  7. Blumberg H, Wallin BG. Direct evidence of neurally mediated vasodilatation in hairy skin of the human foot. J Physiol. 1987;382:105–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Bonte F. Skin moisturization mechanisms: new data. Ann Pharm Fr. 2011;69:135–41.

    Article  CAS  PubMed  Google Scholar 

  9. Vinik AI, Erbas T, Park TS, Pierce KK, Stansberry KB. Methods for evaluation of peripheral neurovascular dysfunction. Diabetes Technol Ther. 2001;3:29–50. This paper provides an overview on available methods for investigating microvascular regulation of the skin.

    Article  CAS  PubMed  Google Scholar 

  10. Hodges GJ, Johnson JM. Adrenergic control of the human cutaneous circulation. Appl Physiol Nutr Metab. 2009;34:829–39.

    Article  PubMed  Google Scholar 

  11. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol. 2010;109:1221–8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Holowatz LA, Thompson-Torgerson C, Kenney WL. Aging and the control of human skin blood flow. Front Biosci. 2010;15:718–39.

    Article  CAS  Google Scholar 

  13. Johnson JM, Kellogg Jr DL. Local thermal control of the human cutaneous circulation. J Appl Physiol. 2010;109:1229–38.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323:27–36.

    Article  CAS  PubMed  Google Scholar 

  15. Ochoa JL, Yarnitsky D, Marchettini P, Dotson R, Cline M. Interactions between sympathetic vasoconstrictor outflow and C nociceptor-induced antidromic vasodilatation. Pain. 1993;54:191–6.

    Article  CAS  PubMed  Google Scholar 

  16. Burnstock G, Ralevic V. New insights into the local regulation of blood flow by perivascular nerves and endothelium. Br J Plast Surg. 1994;47:527–43.

    Article  CAS  PubMed  Google Scholar 

  17. Pergola PE, Kellogg Jr DL, Johnson JM, Kosiba WA, Solomon DE. Role of sympathetic nerves in the vascular effects of local temperature in human forearm skin. Am J Physiol. 1993;265:H785–92.

    CAS  PubMed  Google Scholar 

  18. Lawson SN. Peptides and cutaneous polymodal nociceptor neurones. Prog Brain Res. 1996;113:369–85.

    Article  CAS  PubMed  Google Scholar 

  19. Senba E, Kashiba H. Sensory afferent processing in multi-responsive DRG neurons. Prog Brain Res. 1996;113:387–410.

    Article  CAS  PubMed  Google Scholar 

  20. Szolcsanyi J. Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism. Prog Brain Res. 1996;113:343–59.

    Article  CAS  PubMed  Google Scholar 

  21. Krug A. Quantitative Optische Gewebemessungen am Herzen und an der Leber. 1998.

  22. Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci. 2006;27:503–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kubli S, Waeber B, Dalle-Ave A, Feihl F. Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol. 2000;36:640–8.

    Article  CAS  PubMed  Google Scholar 

  24. Roustit M, Millet C, Blaise S, Dufournet B, Cracowski JL. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc Res. 2010;80:505–11.

    Article  CAS  PubMed  Google Scholar 

  25. Tew GA, Klonizakis M, Crank H, Briers JD, Hodges GJ. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc Res. 2011;82:326–32.

    Article  PubMed  Google Scholar 

  26. Tibirica E, Matheus AS, Nunes B, Sperandei S, Gomes MB. Repeatability of the evaluation of systemic microvascular endothelial function using laser doppler perfusion monitoring: clinical and statistical implications. Clinics (Sao Paulo). 2011;66:599–605.

    Google Scholar 

  27. Stirban A, Nandrean S, Gotting C, Tamler R, Pop A, Negrean M, et al. Effects of n-3 fatty acids on macro- and microvascular function in subjects with type 2 diabetes mellitus. Am J Clin Nutr. 2010;91:808–13.

    Article  CAS  PubMed  Google Scholar 

  28. Kramer HH, Schmelz M, Birklein F, Bickel A. Electrically stimulated axon reflexes are diminished in diabetic small fiber neuropathies. Diabetes. 2004;53:769–74.

    Article  PubMed  Google Scholar 

  29. Krishnan ST, Rayman G. The LDIflare: a novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care. 2004;27:2930–5.

    Article  PubMed  Google Scholar 

  30. Sun PC, Chen CS, Kuo CD, Lin HD, Chan RC, Kao MJ, et al. Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction. Microvasc Res. 2012;83:243–8.

    Article  PubMed  Google Scholar 

  31. Khan F, Elhadd TA, Greene SA, Belch JJ. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care. 2000;23:215–20.

    Article  CAS  PubMed  Google Scholar 

  32. Malik RA, Metcalfe J, Sharma AK, Day JL, Rayman G. Skin epidermal thickness and vascular density in type 1 diabetes. Diabet Med. 1992;9:263–7.

    Article  CAS  PubMed  Google Scholar 

  33. Jaap AJ, Shore AC, Stockman AJ, Tooke JE. Skin capillary density in subjects with impaired glucose tolerance and patients with type 2 diabetes. Diabet Med. 1996;13:160–4.

    Article  CAS  PubMed  Google Scholar 

  34. Morris SJ, Shore AC, Tooke JE. Responses of the skin microcirculation to acetylcholine and sodium nitroprusside in patients with NIDDM. Diabetologia. 1995;38:1337–44.

    Article  CAS  PubMed  Google Scholar 

  35. Jan YK, Shen S, Foreman RD, Ennis WJ. Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot. Microvasc Res. 2013;89:40–6.

    Article  PubMed  Google Scholar 

  36. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.

    Article  CAS  PubMed  Google Scholar 

  37. Jörneskog G, Kalani M, Kuhl J, Bavenholm P, Katz A, Allerstrand G, et al. Early microvascular dysfunction in healthy normal-weight males with heredity for type 2 diabetes. Diabetes Care. 2005;28:1495–7.

    Article  PubMed  Google Scholar 

  38. Arora S, Smakowski P, Frykberg RG, Simeone LR, Freeman R, LoGerfo FW, et al. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care. 1998;21:1339–44. This paper provides data on the influence of neuropathy on microvascular regulation as well as on differences between lower and upper extremities.

    Article  CAS  PubMed  Google Scholar 

  39. Tomesova J, Gruberova J, Lacigova S, Cechurova D, Jankovec Z, Rusavy Z. Differences in skin microcirculation on the upper and lower extremities in patients with diabetes mellitus: relationship of diabetic neuropathy and skin microcirculation. Diabetes Technol Ther. 2013;15:968–75.

    Article  CAS  PubMed  Google Scholar 

  40. Green AQ, Krishnan S, Finucane FM, Rayman G. Altered C-fiber function as an indicator of early peripheral neuropathy in individuals with impaired glucose tolerance. Diabetes Care. 2010;33:174–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology. 2001;57:1701–4.

    Article  CAS  PubMed  Google Scholar 

  42. Vas PR, Green AQ, Rayman G. Small fibre dysfunction, microvascular complications and glycaemic control in type 1 diabetes: a case-control study. Diabetologia 2011.

  43. Jörneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995;38:474–80.

    Article  PubMed  Google Scholar 

  44. Boulton AJ, Scarpello JH, Ward JD. Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia. 1982;22:6–8.

    Article  CAS  PubMed  Google Scholar 

  45. Edmonds ME, Roberts VC, Watkins PJ. Blood flow in the diabetic neuropathic foot. Diabetologia. 1982;22:9–15.

    Article  CAS  PubMed  Google Scholar 

  46. Ward JD, Boulton AJ, Simms JM, Sandler DA, Knight G. Venous distension in the diabetic neuropathic foot (physical sign of arteriovenous shunting). J R Soc Med. 1983;76:1011–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Arora S, Pomposelli F, LoGerfo FW, Veves A. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg. 2002;35:501–5.

    Article  PubMed  Google Scholar 

  48. Veves A, Akbari CM, Primavera J, Donaghue VM, Zacharoulis D, Chrzan JS, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47:457–63.

    Article  CAS  PubMed  Google Scholar 

  49. Baker N, Green A, Krishnan S, Rayman G. Microvascular and C-fiber function in diabetic charcot neuroarthropathy and diabetic peripheral neuropathy. Diabetes Care. 2007;30:3077–9.

    Article  PubMed  Google Scholar 

  50. Pitei DL, Watkins PJ, Edmonds ME. NO-dependent smooth muscle vasodilatation is reduced in NIDDM patients with peripheral sensory neuropathy. Diabet Med. 1997;14:284–90.

    Article  CAS  PubMed  Google Scholar 

  51. Kasalova Z, Prazny M, Skrha J. Relationship between peripheral diabetic neuropathy and microvascular reactivity in patients with type 1 and type 2 diabetes mellitus—neuropathy and microcirculation in diabetes. Exp Clin Endocrinol Diabetes. 2006;114:52–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kilo S, Berghoff M, Hilz M, Freeman R. Neural and endothelial control of the microcirculation in diabetic peripheral neuropathy. Neurology. 2000;54:1246–52.

    Article  CAS  PubMed  Google Scholar 

  53. Parkhouse N, Le Quesne PM. Quantitative objective assessment of peripheral nociceptive C fibre function. J Neurol Neurosurg Psychiatry. 1988;51:28–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Caselli A, Spallone V, Marfia GA, Battista C, Pachatz C, Veves A, et al. Validation of the nerve axon reflex for the assessment of small nerve fibre dysfunction. J Neurol Neurosurg Psychiatry. 2006;77:927–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci (Lond). 1995;89:467–74.

    CAS  Google Scholar 

  56. Vas PR, Rayman G. The rate of decline in small fibre function assessed using axon reflex-mediated neurogenic vasodilatation and the importance of age related centile values to improve the detection of clinical neuropathy. PLoS One. 2013;8:e69920.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Krishnan ST, Quattrini C, Jeziorska M, Malik RA, Rayman G. Abnormal LDIflare but normal quantitative sensory testing and dermal nerve fiber density in patients with painful diabetic neuropathy. Diabetes Care. 2009;32:451–5.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Quattrini C, Harris ND, Malik RA, Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. Diabetes Care. 2007;30:655–9.

    Article  PubMed  Google Scholar 

  59. Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab. 2009;94:2157–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Forst T, Pfutzner A, Kunt T, Pohlmann T, Schenk U, Bauersachs R, et al. Skin microcirculation in patients with type I diabetes with and without neuropathy after neurovascular stimulation. Clin Sci (Lond). 1998;94:255–61.

    CAS  Google Scholar 

  61. Pfutzner A, Forst T, Engelbach M, Margin T, Goitom K, Lobig M, et al. The influence of isolated small nerve fibre dysfunction on microvascular control in patients with diabetes mellitus. Diabet Med. 2001;18:489–94.

    Article  CAS  PubMed  Google Scholar 

  62. Nabuurs-Franssen MH, Houben AJ, Tooke JE, Schaper NC. The effect of polyneuropathy on foot microcirculation in type II diabetes. Diabetologia. 2002;45:1164–71.

    Article  CAS  PubMed  Google Scholar 

  63. Lefrandt JD, Bosma E, Oomen PH, Hoeven JH, Roon AM, Smit AJ, et al. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy. Diabetologia. 2003;46:40–7.

    CAS  PubMed  Google Scholar 

  64. Christensen NJ. Spontaneous variations in resting blood flow, postischaemic peak flow and vibratory perception in the feet of diabetics. Diabetologia. 1969;5:171–8.

    Article  CAS  PubMed  Google Scholar 

  65. Benbow SJ, Pryce DW, Noblett K, MacFarlane IA, Friedmann PS, Williams G. Flow motion in peripheral diabetic neuropathy. Clin Sci (Lond). 1995;88:191–6.

    CAS  Google Scholar 

  66. Bernardi L, Rossi M, Leuzzi S, Mevio E, Fornasari G, Calciati A, et al. Reduction of 0.1 Hz microcirculatory fluctuations as evidence of sympathetic dysfunction in insulin-dependent diabetes. Cardiovasc Res. 1997;34:185–91.

    Article  CAS  PubMed  Google Scholar 

  67. Wiernsperger N. Defects in microvascular haemodynamics during prediabetes: contributor or epiphenomenon? Diabetologia. 2000;43:1439–48.

    Article  CAS  PubMed  Google Scholar 

  68. Hoffman RP, Sinkey CA, Kienzle MG, Anderson EA. Muscle sympathetic nerve activity is reduced in IDDM before overt autonomic neuropathy. Diabetes. 1993;42:375–80.

    Article  CAS  PubMed  Google Scholar 

  69. Schnell O, Kirsch CM, Stemplinger J, Haslbeck M, Standl E. Scintigraphic evidence for cardiac sympathetic dysinnervation in long-term IDDM patients with and without ECG-based autonomic neuropathy. Diabetologia. 1995;38:1345–52.

    Article  CAS  PubMed  Google Scholar 

  70. Ziegler D, Weise F, Langen KJ, Piolot R, Boy C, Hubinger A, et al. Effect of glycaemic control on myocardial sympathetic innervation assessed by [123I]metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia. 1998;41:443–51.

    Article  CAS  PubMed  Google Scholar 

  71. Flynn MD, Edmonds ME, Tooke JE, Watkins PJ. Direct measurement of capillary blood flow in the diabetic neuropathic foot. Diabetologia. 1988;31:652–6.

    Article  CAS  PubMed  Google Scholar 

  72. Netten PM, Wollersheim H, Thien T, Lutterman JA. Skin microcirculation of the foot in diabetic neuropathy. Clin Sci (Lond). 1996;91:559–65.

    CAS  Google Scholar 

  73. Sandeman DD, Shore AC, Tooke JE. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992;327:760–4.

    Article  CAS  PubMed  Google Scholar 

  74. Bollinger A, Frey J, Jager K, Furrer J, Seglias J, Siegenthaler W. Patterns of diffusion through skin capillaries in patients with long-term diabetes. N Engl J Med. 1982;307:1305–10.

    Article  CAS  PubMed  Google Scholar 

  75. Feldt-Rasmussen B. Increased transcapillary escape rate of albumin in type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia. 1986;29:282–6.

    Article  CAS  PubMed  Google Scholar 

  76. Vervoort G, Lutterman JA, Smits P, Berden JH, Wetzels JF. Transcapillary escape rate of albumin is increased and related to haemodynamic changes in normo-albuminuric type 1 diabetic patients. J Hypertens. 1999;17:1911–6.

    Article  CAS  PubMed  Google Scholar 

  77. Hilsted J. Decreased sympathetic vasomotor tone in diabetic orthostatic hypotension. Diabetes. 1979;28:970–3.

    Article  CAS  PubMed  Google Scholar 

  78. Rossi M, Ricordi L, Mevio E, Fornasari G, Orlandi C, Fratino P, et al. Autonomic nervous system and microcirculation in diabetes. J Auton Nerv Syst. 1990;30(Suppl):S133–5.

    Article  PubMed  Google Scholar 

  79. Sun PC, Kuo CD, Chi LY, Lin HD, Wei SH, Chen CS. Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes. Diab Vasc Dis Res. 2013;10:270–6.

    Article  PubMed  Google Scholar 

  80. Schmiedel O, Nurmikko TJ, Schroeter ML, Whitaker R, Harvey JN. Alpha adrenoceptor agonist-induced microcirculatory oscillations are reduced in diabetic neuropathy. Microvasc Res. 2008;76:124–31.

    Article  CAS  PubMed  Google Scholar 

  81. Uccioli L, Mancini L, Giordano A, Solini A, Magnani P, Manto A, et al. Lower limb arterio-venous shunts, autonomic neuropathy and diabetic foot. Diabetes Res Clin Pract. 1992;16:123–30.

    Article  CAS  PubMed  Google Scholar 

  82. Dinh T, Veves A. Microcirculation of the diabetic foot. Curr Pharm Des. 2005;11:2301–9.

    Article  CAS  PubMed  Google Scholar 

  83. Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186:434–41.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Tesfaye S, Kempler P. Painful diabetic neuropathy. Diabetologia. 2005;48:805–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Alin Stirban declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alin Stirban.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stirban, A. Microvascular Dysfunction in the Context of Diabetic Neuropathy. Curr Diab Rep 14, 541 (2014). https://doi.org/10.1007/s11892-014-0541-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0541-x

Keywords

Navigation