Skip to main content

Advertisement

Log in

Beneficial and Detrimental Effects of Glycemic Control on Cardiovascular Disease in Type 2 Diabetes

  • Diabetes and Cardiovascular Disease (S Malik, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Epidemiological data demonstrates that improved regulation of blood glucose correlates with better cardiovascular (CV) outcomes. Conversely, some interventional studies have demonstrated that tight glycemic control has no benefit or can even result in worse CV outcomes. These conclusions parallel the paradox that glycemic control has proven beneficial for microvascular outcomes, while few studies have demonstrated significant macrovascular benefits. This imprecise understanding conveys the need to better comprehend the mechanisms of glycemic control and its impact on CV disease. Such variations in data also require a more comprehensive approach to diabetes and CV disease in which multiple biomarkers such as low density lipoprotein (LDL), low adiponectin, elevated C-reactive protein (CRP) and well established clinical parameters such as high blood pressure, weight, and functional status are incorporated into clinical decision making. Reliance on one parameter in isolation such as glycemic control and one biomarker such as HbA1C does not provide an accurate assessment of CV outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Diabetes factsheet 312. In: World Health Organization. 2011. http://who.int/mediacentre/factsheets/fs312/en/index.html. Accessed 20 July 2012.

  2. National Diabetes Factsheet. In: Center for Disease Control. 2011. http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf . Accessed 17 Jul 2012.

  3. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  4. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil AW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  PubMed  CAS  Google Scholar 

  5. Hellar SR. A summary of the ADVANCE trial. Diabetes Care. 2009;32:S357–61.

    Article  Google Scholar 

  6. Zoungas S, Galan BE, Ninomiya T, et al. Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes. Diabetes Care. 2009;32:2068–74.

    Article  PubMed  CAS  Google Scholar 

  7. •• Duckworth W, Abraira C, Mortiz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39. A comprehensive summary of VADT aims, methods, and results.

    Article  PubMed  CAS  Google Scholar 

  8. •• Gerstein HC, Miller ME, Genuth S, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364:818–28. A comprehensive summary of ACCORD trial aims, methods, and results.

    Article  PubMed  CAS  Google Scholar 

  9. Patel A, MacMahon S, Chalmers J. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  PubMed  CAS  Google Scholar 

  10. Adler AI, Levy JC, Matthews DR, et al. Insulin sensitivity at diagnosis of Type 2 diabetes is not associated with subsequent cardiovascular disease (UKPDS 67). Diabet Med. 2005;22:206–11.

    Article  Google Scholar 

  11. Ismail-Beigi F, Craven T, Baneni MA. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomized trial. Lancet. 2010;276:419–30.

    Article  Google Scholar 

  12. Checking your blood glucose. In: American Diabetes Association. http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-glucose-control/checking-your-blood-glucose.html. Accessed 17 July 2012.

  13. Cardiovascular Disease and Diabetes. In: American Heart Association. http://www.heart.org/HEARTORG/Conditions/Diabetes/WhyDiabetesMatters/Cardiovascular-Disease-Diabetes_UCM_313865_Article.jsp. Accessed 27 Jul 2012.

  14. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  PubMed  CAS  Google Scholar 

  15. Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemic and risks of vascular events and death. N Engl J Med. 2010;363:1410–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kendall DM, Cuddihy RM, Bergenstal RM. Clinical application of incretin-based therapy: therapeutic potential, patient selection and clinical use. Am J Med. 2009;122(6 Suppl):S37–50.

    Article  PubMed  Google Scholar 

  17. Kendall DM, Bergenstal RM. Comprehensive management of patients with type 2 diabetes: establishing priorities of care. Am J Manag Care. 2001;7(10 Suppl):S327–43.

    PubMed  CAS  Google Scholar 

  18. Skyler JS. Diabetic complications. The importance of glucose control. Endocrinol Metab Clin North Am. 1996;25:243–54.

    Article  PubMed  CAS  Google Scholar 

  19. DCCT study group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  20. Stratton IM, Adler AI, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.

    Article  PubMed  CAS  Google Scholar 

  21. Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59:635–43.

    Article  PubMed  CAS  Google Scholar 

  22. UK Prospective Diabetes Study Group. Effects of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:845–65.

    Google Scholar 

  23. American Diabetes Association. Implications of the United Kingdom prospective diabetes study. Diabetes Care. 2002;25(S1):S28–32.

    Google Scholar 

  24. ADVANCE Collaborative Group. ADVANCE—Action in Diabetes and Vascular disease: patient recruitment and characteristics of the study population at baseline. Diabet Med. 2005;22:882–8.

    Article  Google Scholar 

  25. Adler AI, Neil HA, Manley SE, et al. Hyperglycemia and hyperinsulinemia at diagnosis of diabetes and their association with subsequent cardiovascular disease in the United Kingdon prospective diabetes study (UKPDS 47). Am Heart J. 1999;138:S353–9.

    PubMed  CAS  Google Scholar 

  26. Colaqiuri S, Cull CA, Holman RR, UKPDS group. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61. Diabetes Care. 2002;25:1410–7.

    Article  Google Scholar 

  27. The ACCORD study group. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am J Cardiol. 2007;99:21i–33i.

    Google Scholar 

  28. Riddle MC, Ambrousius WT, Brillon DJ, et al. Epidemiological relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care. 2010;33:983–90.

    Article  PubMed  Google Scholar 

  29. Genuth S, Ismail-Beigi F. Clinical implications of the ACCORD trial. J Clin Endocrinol Metab. 2012;97:41–8.

    Article  PubMed  CAS  Google Scholar 

  30. Terry T, Raravikar K. Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes?: insights from ACCORD, ADVANCE, and VADT. Curr Cardiol Rep. 2012;14:79–88.

    Article  PubMed  Google Scholar 

  31. Abraira C, Duckworth W, McCarren M, et al. Design of the cooperative study on glycemic control and complications in diabetes mellitus type 2 veterans affairs diabetes trial. J Diabetes Complications. 2003;17:314–22.

    Article  PubMed  Google Scholar 

  32. Saremi A, Moritz TE, Anderson RJ. Rates and determinants of coronary and abdominal aortic artery calcium progression in the veterans affairs diabetes trial (VADT). Diabetes Care. 2012;33:1642–7.

    Google Scholar 

  33. Reaven PD, Moritz TE, Schwenke DC. Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes. 2009;58:2642–8.

    Article  PubMed  CAS  Google Scholar 

  34. Zoungas S, Patel A, Chalmers J, et al. Sever hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;163:1410–8.

    Article  Google Scholar 

  35. Qaseem A, Humphrey LL, Sweet DE, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2012;156:218–31.

    PubMed  Google Scholar 

  36. Powers AC, D’Alessio D. Endocrine pancreas and pharmacotherapy of diabetes mellitus and hypoglycemia. In: Brunton L, Chabner B, Knollman B, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. USA: McGraw-Hill Companies; 2012. p. 1237–74.

    Google Scholar 

  37. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomized clinical trial. Lancet. 2005;366:1279–89.

    Article  PubMed  CAS  Google Scholar 

  38. Henry RR, Lincoff AM, Mudaliar S, et al. Effect of the duel peroxisome profilerator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II randomized, dose-ranging study. Lancet. 2009;374:126–35.

    Article  PubMed  CAS  Google Scholar 

  39. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicenter, randomized, open-label trial. Lancet. 2009;373:2125–35.

    Article  PubMed  CAS  Google Scholar 

  40. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  PubMed  CAS  Google Scholar 

  41. European Medicines Agency recommends suspension of Avandia, Avandamet and Avaglim. In: European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/09/WC500096996.pdf. Accessed 1 August 2012.

  42. FDA Drug safety website. http://www.fda.gov/Drugs/DrugSafety/ucm255005.htm#Safety_Announcement. Accessed 18 Jul 2012.

  43. Leibel B. An analysis of the University Group Diabetes Study Program: data results and conclusions. Can Med Assoc J. 1971;105(105):292–4.

    PubMed  CAS  Google Scholar 

  44. Stephan D, Winkler M, Kuhner P, et al. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels. Diabetologia. 2006;49:2039–48.

    Article  PubMed  CAS  Google Scholar 

  45. Esposito K, Giugliano D, Nappo F, et al. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004;110:214–9.

    Article  PubMed  CAS  Google Scholar 

  46. Holman RR, Haffner SM, McMurray JJ. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362:1463–76.

    Article  PubMed  CAS  Google Scholar 

  47. Hanefeld M, Cagatau M, Petrowitsch, et al. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis. Eur Heart J. 2004;25:10–6.

    Article  PubMed  CAS  Google Scholar 

  48. Emoto T, Sawada T, Hashimoto M, et al. Effect of 3-month repeated administration of Miglitol on vascular endothelial function in patients with diabetes mellitus and coronary artery disease. Am J Cardiol. 2012;109:42–6.

    Article  PubMed  CAS  Google Scholar 

  49. Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;23:486–94.

    Article  Google Scholar 

  50. Kaiser T, Sawicki PT. Acarbose for prevention of diabetes, hypertension and cardiovascular events. A critical analysis of the STOP-NIDDM data. Diabetologia. 2004;47:575–80.

    Article  PubMed  CAS  Google Scholar 

  51. Acarbose Cardiovascular evaluation. In NIH Clinical Trials. 2012. NLM identifier: NCT00829660. http://clinicaltrials.gov/ct2/show/NCT00829660. Accessed 19 Jul 2012.

  52. Grieve DJ, Cassidy RS, Green BD. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycaemic control? Br J Pharmacol. 2009;157:1340–51.

    Article  PubMed  CAS  Google Scholar 

  53. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–5.

    Article  PubMed  CAS  Google Scholar 

  54. Sokos GG, Nikolaidis LA, Mankad S, et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12:694–9.

    Article  PubMed  CAS  Google Scholar 

  55. Nystrom T, et al. Effect of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Physiol Endocrinol Metab. 2004;287:E1209–15.

    Article  Google Scholar 

  56. Noyan-Ashraf MH, Momen M, Ban K, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58:975–83.

    Article  PubMed  CAS  Google Scholar 

  57. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.

    Article  PubMed  CAS  Google Scholar 

  58. Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.

    Article  PubMed  CAS  Google Scholar 

  59. Hattori Y, Jojima T, Tomizawa A, et al. A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia. 2010;53:2256–63.

    Article  PubMed  CAS  Google Scholar 

  60. Frederich R, Alexander JH, Fiedorek FT, et al. A systematic assessment of cardiovascular outcomes in the saxagliptin drug development program for type 2 diabetes. Postgrad Med. 2010;122:16–7.

    Article  PubMed  Google Scholar 

  61. Sitagliptin cardiovascular outcome study (TECOS). In: NIH Clinical Trials. NLM Identifier: NCT00790205. http://clinicaltrials.gov/ct2/show/NCT00790205?term=TECOS&rank=1. Accessed 20 July 2012.

  62. CAROLINA: Cardiovascular Outcome Study of Linagliptin Versus Climepiride in Patients With Type 2 Diabetes. InL NIH Clinical Trials. NLM Identifier: NCT01243424. http://clinicaltrials.gov/ct2/show/NCT01243424?term=carolina+linagliptin&rank=1. Accessed 20 July 2012.

  63. Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome, (EXAMINE). In: NIH Clinical Trials. NLM Identifier: NCT00968708. http://clinicaltrials.gov/ct2/show/NCT00968708?term=Examine&rank=1. Accessed 20 July 2012.

  64. Double blind placebo study of vildagliptin in prehypertensives type II diabetics (Prediab). In NIH Clinical Trials. NLM Identifier: NCT01001962. http://clinicaltrials.gov/ct2/show/NCT01001962?term=PREDIAB&rank=1. Accessed 20 July 2012.

  65. Effects of vildagliptin on left ventricular function in patients with type 1 diabetes and congestive heart failure. In: NIH Clinical Trials. NLM identifier: NCT00894868. http://clinicaltrials.gov/ct2/show/NCT00894868?term=effect+of+vildagliptin+on+left+ventricular+function&rank=1. Accessed 20 July 2012.

  66. Woodworth JR, Howey DC, Bowsher RR. Establishment of time-action profiles for regular and NPH insulin using pharmacodynamic modeling. Diabetes Care. 1994;17:64–9.

    Article  PubMed  CAS  Google Scholar 

  67. Anselmino M, Ohrvik J, Malmberg K, et al. Glucose lowering treatment in patients with coronary arter disease is prognostically important not only in established but also in newly detected diabetes mellitus: a report from the Euro Heart Survey on Diabetes and the Heart. Eur Heart J. 2008;29:177–84.

    Article  PubMed  Google Scholar 

  68. Smooke S, Horwich TB, Fonarow GC, et al. Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure. Am Heart J. 2005;149:168–74.

    Article  PubMed  CAS  Google Scholar 

  69. Currie CJ, Peters JR, Tynan A, et al. Survival as a function of Hba(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375:481–9.

    Article  PubMed  CAS  Google Scholar 

  70. Gamble JM, Simpson SH, Eurich DT, et al. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes Obes Metab. 1987;12:47–53.

    Article  Google Scholar 

  71. Rensing KL, Reuwer AQ, Arsenault BJ, et al. Reducing cardiovascular disease risk in patients with type 2 diabtes and concomitant macrovascular disease: can insulin be too much of a good thing? Diabetes Obes Metab. 2011;13:1073–87.

    Article  PubMed  CAS  Google Scholar 

  72. Gerstein HC, Bosch J, Dagenais GR. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012. doi:10.1056/NEJMoa1203858.

  73. Holman RR, Thorne KI, Farmer AJ, et al. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med. 2007;357:1716–30.

    Article  PubMed  CAS  Google Scholar 

  74. Holman RR, Farmer AJ, Davies MJ, et al. Three-year efficacy of complex insulin regimens in type 2 diabetes. N Engl J Med. 2009;361:1736–47.

    Article  PubMed  CAS  Google Scholar 

  75. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemic in type 2 diabtes: A patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55:1577–96.

    Article  PubMed  CAS  Google Scholar 

  76. Kim J, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401–14.

    Article  PubMed  CAS  Google Scholar 

  77. Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  PubMed  Google Scholar 

  78. Lindsey JB, de Lemos JA, Cipollone F. Association between circulating soluble receptor for advanced glycation end products and atherosclerosis observations from the Dallas Heart Study. Diabetes Care. 2009;32:1218–20.

    Article  PubMed  CAS  Google Scholar 

  79. • Juraschek SP, Steffes MW, Miller 3rd ER, Selvin E. Alternative markers of hyperglucemia and risk of diabetes. Diabetes Care. 2012. doi:10.2337/dc12-0787. Illustrates the potential use of new biomarkers for diagnosing and treating diabetes.

  80. Nishikawa T, Sasahara T, Kiritoshi S, et al. Evaulation of urinary 8-hydroxydeoxyguanosine as a novel biomarker of macrovascular complications in type 2 diabetes. Diabetes Care. 2003;26:1507–12.

    Article  PubMed  CAS  Google Scholar 

  81. NICE clinical guideline 87 – Type 2 diabetes. In: Type 2 diabetes. The management type 2 diabetes. National Institute for Health and Clinical Excellence. http://www.nice.org.uk/nicemedia/pdf/CG87NICEGuideline.pdf. Accessed 13 Sep 2012.

  82. Simmons RK, Coleman RL, Price HC, et al. Performance of the UK Prospective Diabetes Study Risk Engine and the Framingham Risk Equations in estimating cardiovascular disease in the EPIC-Norfolk cohort. Diabetes Care. 2009;32:708–13.

    Article  PubMed  Google Scholar 

  83. van Dieren S, Peelen ML, Nothlings U, et al. External validation of the UK Prospective Diabetes Study (UKPDS) risk engine in patients with type 2 diabetes. Diabetologia. 2011;54:264–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of interest P.R. Taub: none; E. Higginbotham: none; R.R. Henry: has board membership with Amylin Pharmaceuticals, Boehringer Ingelheim, Lilly Pharmaceuticals, Merck Pharmaceuticals, Novo Nordisk, Gilead Pharmaceuticals, Intarcia Pharmaceuticals; has been a consultant for Amgen Pharmaceuticals, Boehringer Ingelheim, Sanofi Aventis, Merck Pharmaceuticals, Gilead Pharmaceuticals, Isis Pharmaceuticals; has received grant support from Amylin Pharmaceuticals, Amgen Pharmaceuticals, Bristol Myers Squibb/AstraZeneca, Johnson & Johnson/Jenssen, Eli Lilly Pharmaceuticals, Sanofi Aventis; and has received payment for development of educational presentations including service on speakers’ bureaus from Boehringer Ingelheim/Lilly Pharmaceuticals

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pam R. Taub.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taub, P.R., Higginbotham, E. & Henry, R.R. Beneficial and Detrimental Effects of Glycemic Control on Cardiovascular Disease in Type 2 Diabetes. Curr Cardiol Rep 15, 332 (2013). https://doi.org/10.1007/s11886-012-0332-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-012-0332-4

Keywords

Navigation