Skip to main content
Log in

Analysis of dust wet deposition in the mid-latitudes of the Northern Hemisphere

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Wet deposition is the efficient removal process for fine dust aerosol. Dust wet deposition in the mid-latitudes of the Northern Hemisphere is investigated in this study by analyzing the dust simulations with the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, measurements from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the meteorological and hydrological fields from Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis. The dust aerosol optical depth (AOD) and dust extinction coefficient from CALIPSO observation and GOCART simulation, in conjunction with the wind field from MERRA, show that the dust plume extending eastward from Asia to Pacific in the mid-latitudes becomes strongest in spring, while Taklamakan, Sahara, and Gobi dust are the main components and distribute vertically in the upper, middle, and lower parts of the dust layer across North Pacific, respectively. The wet deposition of dust in the mid-latitudes is mainly in the large-scale wet removal process, which becomes strongest in spring. The occurrence of wet deposition is accompanied by dust loading or transport. The comparison of wet deposition from GOCART simulation with the cloud water mixing ratio and precipitation production rate from MERRA indicated that wet deposition is mainly related to the water amount in ice cloud, and has a positive relationship with the precipitation in ice cloud layer. On the other hand, over arid and semiarid regions in central and eastern Asia with high dust loading, the absence of cloud water caused by the semidirect effect of dust (Huang et al., Geophys Res Lett 33(19), 2006b), can lower the amount of wet deposition. The comparison of wet deposition from GOCART simulation with the cloud water mixing ratio and vertical pressure velocity from MERRA demonstrates that a large-scale dynamic process, the ascending motion in the subpolar low-pressure system over the North Pacific, can increase the water amount in cloud and cause much more wet deposition of dust, which explains the occurrence of the largest wet deposition over the North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chin M, Ginoux P, Kinne S, Torres O, Holben BN, Duncan BN, Martin R, Logan J, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J Atmos Sci 59:461–483

    Article  Google Scholar 

  • Chin M, Diehl T, Ginoux P, Malm W (2007) Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmos Chem Phys 7(21):5501–5517

    Article  CAS  Google Scholar 

  • Demott PJ, Kenneth S, Poellot MR, Darrel B, Rogers DC, Brooks SD, Prenni AJ, Kreidenweis SM (2003) African dust aerosols as atmospheric ice nuclei. Geophys Res Lett 30(14):291–305

  • Fuchs NA (1964) The mechanics of aerosols. Pergamon, Elmsford, New York

  • Gao Y, Fan SM, Sarmiento JL (2003) Aeolian iron input to the ocean through precipitation scavenging: a modeling perspective and its implication for natural iron fertilization in the ocean. J Geophys Res 108(D7). https://doi.org/10.1029/2002JD002420

  • Ginoux P, Chin M, Tegen I, Prospero J, Holben B, Dubovik O, Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20273. https://doi.org/10.1029/2000JD000053

    Article  Google Scholar 

  • Ginoux P, Prospero J, Torres O, Chin M (2004) Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic oscillation. Environ Model Softw 19(2):113–128

    Article  Google Scholar 

  • Ginoux P, Prospero J, Gill T, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev Geophys 50(3). https://doi.org/10.1029/2012RG000388

  • Giorgi F, Chameides WL (1986) Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J Geophys Res 91:14367–14376

    Article  CAS  Google Scholar 

  • Grogan DFP, Nathan TR, Chen SH (2016) Effects of Saharan dust on the linear dynamics of African easterly waves. J Atmos Sci 73(2):891–911

    Article  Google Scholar 

  • Hamidi M, Kavianpour MR, Shao Y (2014) Numerical simulation of dust events in the Middle East. Aeolian Res 13:59–70

    Article  Google Scholar 

  • Hand JL, Mahowald NM, Chen Y, Siefert RL, Luo C, Subramaniam A, Fung I (2004) Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: biogeochemical implications. J Geophys Res 109(D17):1781–1795. https://doi.org/10.1029/2004JD004574

    Article  CAS  Google Scholar 

  • Hong CC, Huanghsiung H, Hsinhsing C (2009) A study of east Asian cold surges during the 2004/05 winter: impact of east Asian jet stream and subtropical upper-level Rossby wave trains. Terr Atmos Ocean Sci 20(2):333–343

    Article  Google Scholar 

  • Huang J, Minnis P, Lin B, Wang T, Yi Y, Hu Y, Sun MS, Ayers K (2006a) Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys Res Lett 33(6):272–288

    Article  CAS  Google Scholar 

  • Huang J, Lin B, Minnis P, Wang T, Wang X, Hu Y, Yi Y, Ayers K (2006b) Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys Res Lett 33(19). https://doi.org/10.1029/2006GL026561

  • Kaufman YJ, Koren I, Remer LA, Tanré D, Ginoux P, Fan S (2005) Dust transport and deposition observed from the Terra-moderate resolution imaging spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110(D10):575–582

    Article  Google Scholar 

  • Lee YC, Wenig M, Zhang ZX, Sugimoto N, Larko D, Diehl T (2011) Dust episodes in Hong Kong (South China) and their relationship with the Sharav and Mongolian cyclones and jet streams. Air Qual Atmos Health 5(4):413–424. https://doi.org/10.1007/s11869-011-0134-7

    Article  Google Scholar 

  • Liu Z, Omar A, Vaughan M, Hair J, Kittaka C, Hu Y, Powell K, Trepte C, Winker D, Hostetler C, Ferrare R, Pierce R (2008) CALIPSO lidar observations of the optical properties of Saharan dust: a case study of long-range transport. J Geophys Res 113(D7). https://doi.org/10.1029/2007JD008878

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cyles 19(4). https://doi.org/10.1029/2004GB002402

  • Osada K, Ura S, Kagawa M, Mikami M, Tanaka TY, Matoba S, Aoki K, Shinoda M, Kurosaki Y, Hayashi M, Shimizu A, Uematsu M (2014) Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution. Atmos Chem Phys 14(2):1107–1121

    Article  CAS  Google Scholar 

  • Prospero JM, Landing WM, Schulz M (2010) African dust deposition to Florida: temporal and spatial variability and comparisons to models. J Geophys Res 115(D13). https://doi.org/10.1029/2009JD012773

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, Silva AD, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder C, Reichle R, Robertson F, Ruddick A, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Shao Y, Jung E, Leslie LM (2002) Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J Geophys Res 107(D24):4814–4836. https://doi.org/10.1029/2001/JD001493

    Article  Google Scholar 

  • Shao Y, Yang Y, Wang J, Song Z, Leslie LM, Dong C, Zhang Z, Lin Z, Kanai Y, Yabuki S, Chun Y (2003) Northeast Asian dust storms: real-time numerical prediction and validation. J Geophys Res 108(D22)

  • Shao Y, Leys JF, Mctainsh GH, Tews K (2007) Numerical simulation of the October 2002 dust event in Australia. J Geophys Res 112(D8):409–427

    Article  Google Scholar 

  • Shao Y, Wyrwoll KH, Chappell A, Huang J, Lin Z, Mc-Tainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: an emerging core theme in earth system science. Aeolian Res 2:181–204

    Article  Google Scholar 

  • Shimizu A, Sugimoto N, Matsui I, Arao K, Uno I, Murayama T, Kagawa N, Aoki K, Uchiyama A, Yamazaki A (2004) Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J Geophys Res 109(D19):1255–1263

    Article  Google Scholar 

  • Tanaka TY, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budgets. Glob Planet Chang 52(1):88–104

    Article  Google Scholar 

  • Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev 22:1821–1834

    Article  Google Scholar 

  • Tegen I, Lacis AA, Fung I (1996) The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380:419–422

    Article  CAS  Google Scholar 

  • Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N (2009) Asian dust transported on full circuit around the globe. Nat Geosci 2(8):557–560

    Article  CAS  Google Scholar 

  • van den Heever SC, Carrio GG, Cotton WR, DeMott PJ, Prenni AJ (2006) Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J Atmos Sci 63(7):1752–1775

    Article  Google Scholar 

  • Wang Y, Choi Y, Zeng T, Ridley B, Blake N, Blake D, Flocke F (2006) Late-spring increase of trans-Pacific pollution transport in the upper troposphere. Geophys Res Lett 33(1). https://doi.org/10.1029/2005GL024975

  • Watanabe M (2003) Asian jet waveguide and a downstream extension of the North Atlantic oscillation. J Clim 17(24):4674–4691

    Article  Google Scholar 

  • Wesely ML (1989) Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304

    Article  CAS  Google Scholar 

  • Wilcox EM, Lau KM, Kim KM (2010) A northward shift of the North Atlantic Ocean intertropical convergence zone in response to summertime Saharan dust outbreaks. Geophys Res Lett 37(4):90–98

    Article  Google Scholar 

  • Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(19):228–262

    Article  Google Scholar 

  • Yu HB, Chin M, Winker DM, Omar AH, Liu ZY, Kittaka C, Diehl T (2010) Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: regional and seasonal variations. J Geophys Res 115(D4). https://doi.org/10.1029/2009JD013364

  • Yu HB, Remer LA, Kahn RA, Chin M, Zhang Y (2013) Satellite perspective of aerosol intercontinental transport: from qualitative tracking to quantitative characterization. Atmos Res 124:73–100

    Article  CAS  Google Scholar 

  • Zhang ZX, Zhou W, Wenig M, Yang LG (2017a) Impact of long-range desert dust transport on coastal East Asia: analysis of urban dust concentration and wet deposition with model simulation. Air Qual Atmos Health 10(3):325–337. https://doi.org/10.1007/s11869-016-0440-1

    Article  CAS  Google Scholar 

  • Zhang ZX, Zhou W, Wenig M, Yang LG (2017b) Impact of long-range desert dust transport on hydrometeor formation over coastal East Asia. Adv Atmos Sci 34(1):101–115. https://doi.org/10.1007/s00376-016-6157-0

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by National Nature Science Foundation of China Grants (41675062, 41375096) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project Nos. CityU 11306417, 11335316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxi Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, W. & Yang, L. Analysis of dust wet deposition in the mid-latitudes of the Northern Hemisphere. Air Qual Atmos Health 12, 217–227 (2019). https://doi.org/10.1007/s11869-018-0652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-018-0652-7

Keywords

Navigation