Skip to main content

Advertisement

Log in

The Emerging Role of Anti-Angiogenic Therapy for Malignant Glioma

  • Central Nervous System Malignancies
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Adults with glioblastoma multiforme (GBM), the most common primary brain tumor, have an unacceptably poor outcome with conventional cytotoxic therapies. Malignant gliomas are remarkably angiogenic, and vascular endothelial growth factor (VEGF) is the dominant pro-angiogenic factor. Recent clinical trials targeting VEGF signaling have achieved unprecedented rates of durable radiographic and clinical response, while also confirming adequate safety among recurrent malignant glioma patients. An array of additional clinical trials evaluating anti-angiogenic strategies are underway for both recurrent and newly diagnosed malignant glioma patients. Promising results of these approaches suggest that the treatment of GBM may represent an emerging paradigm of anti-angiogenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, has been highlighted as: •Of importance ••Of major importance

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352(10):987–996

    PubMed  CAS  Google Scholar 

  2. Simpson L, Galanis E: Recurrent glioblastoma multiforme: advances in treatment and promising drug candidates. Expert Rev Anticancer Ther 2006, 6(11):1593–1607

    PubMed  CAS  Google Scholar 

  3. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971, 285(21):1182–1186

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86(3):353–364

    PubMed  CAS  Google Scholar 

  5. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD: Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 1998, 18(5):510–520

    PubMed  CAS  Google Scholar 

  6. Brem S, Cotran R, Folkman J: Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 1972, 48(2):347–356

    PubMed  CAS  Google Scholar 

  7. Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D, et al.: SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 2003, 63(14):4009–4016

    PubMed  CAS  Google Scholar 

  8. Saleh M, Stacker SA, Wilks AF: Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996;56(2):393–401

    PubMed  CAS  Google Scholar 

  9. Rich JN, Sathornsumetee S, Keir ST, Kieran MW, Laforme A, Kaipainen A, et al.: ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 2005, 11(22):8145–8157

    PubMed  CAS  Google Scholar 

  10. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994, 367(6463):576–579

    PubMed  CAS  Google Scholar 

  11. Machein MR, Risau W, Plate KH: Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 1999, 10(7):1117–1128

    PubMed  CAS  Google Scholar 

  12. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, et al.: Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001, 61(18):6624–6628

    PubMed  CAS  Google Scholar 

  13. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al.: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993, 362(6423):841–844

    PubMed  CAS  Google Scholar 

  14. Jones-Bolin S, Zhao H, Hunter K, Klein-Szanto A, Ruggeri B: The effects of the oral, pan-VEGF-R kinase inhibitor CEP-7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol Cancer Ther 2006, 5(7):1744–1753

    PubMed  CAS  Google Scholar 

  15. Jane EP, Premkumar DR, Pollack IF: Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther 2006, 319(3):1070–1080

    PubMed  CAS  Google Scholar 

  16. Goudar RK, Shi Q, Hjelmeland MD, Keir ST, McLendon RE, Wikstrand CJ, et al.: Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 2005, 4(1):101–112

    PubMed  CAS  Google Scholar 

  17. Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn JC: PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 2004, 55(2):426–432; discussion 432

    PubMed  Google Scholar 

  18. Frederick B, Gustafson D, Bianco C, Ciardiello F, Dimery I, Raben D: ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. Int J Radiat Oncol Biol Phys 2006, 64(1):33–37

    PubMed  CAS  Google Scholar 

  19. de Bouard S, Herlin P, Christensen JG, Lemoisson E, Gauduchon P, Raymond E, et al.: Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-oncology 2007, 9(4):412–423

    PubMed  Google Scholar 

  20. Damiano V, Melisi D, Bianco C, Raben D, Caputo R, Fontanini G, et al.: Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Clin Cancer Res 2005, 11(15):5639–5644

    PubMed  CAS  Google Scholar 

  21. Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 1996, 93(16):8502–8507

    PubMed  CAS  Google Scholar 

  22. Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B: Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 2006, 65(5):1536–1543

    PubMed  CAS  Google Scholar 

  23. Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA, et al.: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007, 25(30):4722–4729

    PubMed  CAS  Google Scholar 

  24. Vredenburgh JJ, Desjardins A, Herndon JE II, Dowell JM, Reardon DA, Quinn JA, et al.: Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007, 13(4):1253–1259

    PubMed  CAS  Google Scholar 

  25. Yap R, Veliceasa D, Emmenegger U, Kerbel RS, McKay LM, Henkin J, et al.: Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy. Clin Cancer Res 2005, 11(18):6678–6685

    PubMed  CAS  Google Scholar 

  26. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al.: AZD2171, a Pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11(1):83–95

    PubMed  CAS  Google Scholar 

  27. Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, Shimada H, et al.: Alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 2002, 98(5):690–697

    PubMed  CAS  Google Scholar 

  28. Smith JW: Cilengitide Merck. Curr Opin Investig Drugs 2003, 4(6):741–745

    PubMed  CAS  Google Scholar 

  29. Yamada S, Bu XY, Khankaldyyan V, Gonzales-Gomez I, McComb JG, Laug WE: Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery 2006;59(6):1304–1312; discussion 1312

    PubMed  Google Scholar 

  30. Chatterjee S, Matsumura A, Schradermeier J, Gillespie GY: Human malignant glioma therapy using anti-alpha(v)beta3 integrin agents. J Neurooncol 2000, 46(2):135–144

    PubMed  CAS  Google Scholar 

  31. Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J, et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002, 62(20):5736–5742

    PubMed  CAS  Google Scholar 

  32. Tonn JC, Wunderlich S, Kerkau S, Klein CE, Roosen K: Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns. Anticancer Res 1998, 18(4A):2599–2605

    PubMed  CAS  Google Scholar 

  33. Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, et al.: Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 2007, 25(13):1651–1657

    PubMed  CAS  Google Scholar 

  34. Eskens FA, Dumez H, Hoekstra R, Perschl A, Brindley C, Bottcher S, et al.: Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003, 39(7):917–926

    PubMed  CAS  Google Scholar 

  35. Reardon DA, Fink K, Nabors LB, Cloughesy T, Plotkin S, Schiff D, et al.: Phase IIa trial of cilengitide (EMD121974) single-agent therapy in patients (pts) with recurrent glioblastoma (GBM): EMD 121974-009. In 43rd Annual Meeting of American Society of Clinical Oncology. Edited by Grunberg SM. Chicago, IL: Lisa Greaves; 2007:75s

  36. Stupp R, Goldbrunnr R, Neyns B, Schlegel U, Clement P, Grabenbauer GG, et al.: Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients (pts) with newly diagnosed glioblastoma (GBM). In 2007 ASCO Annual Meeting Proceedings. Edited by Grunberg SM. Chicago, IL: Lisa Greaves; 2007:75s

  37. Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ: Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 1995, 92(10):4562–4566

    PubMed  CAS  Google Scholar 

  38. Buckner JC, Brown LD, Kugler JW, Cascino TL, Krook JE, Mailliard JA, et al.: Phase II evaluation of recombinant interferon alpha and BCNU in recurrent glioma. J Neurosurg 1995, 82(3):430–435

    PubMed  CAS  Google Scholar 

  39. Brandes AA, Scelzi E, Zampieri P, Rigon A, Rotilio A, Amista P, et al.: Phase II trial with BCNU plus alpha-interferon in patients with recurrent high-grade gliomas. Am J Clin Oncol 1997, 20(4):364–367

    PubMed  CAS  Google Scholar 

  40. Fine HA, Wen PY, Robertson M, O’Neill A, Kowal J, Loeffler JS, et al.: A phase I trial of a new recombinant human beta-interferon (BG9015) for the treatment of patients with recurrent gliomas. Clin Cancer Res 1997, 3(3):381–387

    PubMed  CAS  Google Scholar 

  41. Yung WK, Prados M, Levin VA, Fetell MR, Bennett J, Mahaley MS, et al.: Intravenous recombinant interferon beta in patients with recurrent malignant gliomas: a phase I/II study. J Clin Oncol 1991, 9(11):1945–1949

    PubMed  CAS  Google Scholar 

  42. Kerbel RS, Kamen BA: The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004, 4(6):423–436

    PubMed  CAS  Google Scholar 

  43. Kim JT, Kim JS, Ko KW, Kong DS, Kang CM, Kim MH, et al.: Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 2006, 16(1):33–39

    PubMed  Google Scholar 

  44. Son MJ, Kim JS, Kim MH, Song HS, Kim JT, Kim H, et al.: Combination treatment with temozolomide and thalidomide inhibits tumor growth and angiogenesis in an orthotopic glioma model. Int J Oncol 2006, 28(1):53–59

    PubMed  CAS  Google Scholar 

  45. Bello L, Carrabba G, Giussani C, Lucini V, Cerutti F, Scaglione F, et al.: Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 2001, 61(20):7501–7506

    PubMed  CAS  Google Scholar 

  46. Herrlinger U, Rieger J, Steinbach JP, Nagele T, Dichgans J, Weller M: UKT-04 trial of continuous metronomic low-dose chemotherapy with methotrexate and cyclophosphamide for recurrent glioblastoma. J Neurooncol 2005, 71(3):295–299

    PubMed  CAS  Google Scholar 

  47. Tuettenberg J, Grobholz R, Korn T, Wenz F, Erber R, Vajkoczy P Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 2005, 131(1):31–40

    PubMed  CAS  Google Scholar 

  48. Kesari S, Schiff D, Doherty L, Gigas DC, Batchelor TT, Muzikansky A, et al.: Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro-oncology 2007, 9(3):354–363

    PubMed  CAS  Google Scholar 

  49. Kieran MW, Turner CD, Rubin JB, Chi SN, Zimmerman MA, Chordas C, et al.: A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005, 27(11):573–581

    PubMed  Google Scholar 

  50. Conrad C, Friedman HS, Reardon DA, Provenzale JM, Jackson E, Serajuddin H, et al.: A Phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). In Proceedings of American Society of Clinical Oncology. Edited by Grunberg SM. New Orleans, LA: Lisa Greaves;2004:110

  51. Reardon DA, Friedman HS, Yung WKA, Brada M, Conrad C, Provenzale JM, et al.: A phase I/II trial of PTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM). In Proceedings of American Society of Clinical Oncology. Edited by Grunberg SM. New Orleans, LA: Lisa Greaves; 2004:110

  52. Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF: MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006, 66(8):1258–1260

    PubMed  CAS  Google Scholar 

  53. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al.: Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007, 25(30):4714–4721

    PubMed  CAS  Google Scholar 

  54. Raiser J, Gallot L, Levy RM, Getch C, Mellot A, Newman S, et al.: A phase II safety study of bevacizumab in patients with multiple recurrent or progressive malignant gliomas. In Twelfth Annual Meeting of the Society of Neuro-Oncology 2007, Dallas, TX. Edited by Yung A. 2007:530

  55. Gonzalez J, Kumar AJ, Conrad CA, Levin VA: Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 2007, 67(2):323–326

    PubMed  CAS  Google Scholar 

  56. D’Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994, 91(9):4082–4085

    PubMed  CAS  Google Scholar 

  57. Marx GM, Pavlakis N, McCowatt S, Boyle FM, Levi JA, Bell DR, et al.: Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neurooncol 2001, 54(1):31–38

    PubMed  CAS  Google Scholar 

  58. Short SC, Traish D, Dowe A, Hines F, Gore M, Brada M: Thalidomide as an anti-angiogenic agent in relapsed gliomas. J Neurooncol 2001, 51(1):41–45

    PubMed  CAS  Google Scholar 

  59. Fine HA, Figg WD, Jaeckle K, Wen PY, Kyritsis AP, Loeffler JS, et al.: Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 2000, 18(4):708–715

    PubMed  CAS  Google Scholar 

  60. Fine HA, Wen PY, Maher EA, Viscosi E, Batchelor T, Lakhani N, et al.: Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol 2003, 21(12):2299–2304

    PubMed  CAS  Google Scholar 

  61. Baumann F, Bjeljac M, Kollias SS, Baumert BG, Brandner S, Rousson V, et al.: Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neurooncol 2004, 67(1–2):191–200

    PubMed  Google Scholar 

  62. Chang SM, Lamborn KR, Malec M, Larson D, Wara W, Sneed P, et al.: Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2004, 60(2):353–357

    PubMed  CAS  Google Scholar 

  63. Konner J, Dupont J: Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 2004, 4(Suppl 2):S81–S85

    PubMed  CAS  Google Scholar 

  64. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al.: VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002, 99(17):11393–11398

    PubMed  CAS  Google Scholar 

  65. Wachsberger PR, Burd R, Cardi C, Thakur M, Daskalakis C, Holash J, et al.: VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys 2007, 67(5):1526–1537

    PubMed  CAS  Google Scholar 

  66. Baish JW, Jain RK: Fractals and cancer. Cancer Res 2000, 60(14):3683–3688

    PubMed  CAS  Google Scholar 

  67. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994, 54(17):4564–4568

    PubMed  CAS  Google Scholar 

  68. Plate KH, Mennel HD: Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 1995, 47(2–3):89–94

    PubMed  CAS  Google Scholar 

  69. Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S, Smith JK, et al.: Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 2005, 12(10):1232–1240

    PubMed  Google Scholar 

  70. Deeken JF, Loscher W: The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007, 13(6):1663–1674

    PubMed  CAS  Google Scholar 

  71. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, et al.: Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007, 6(8):650–661

    PubMed  CAS  Google Scholar 

  72. Pardridge WM: Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003;3(2):90–105, 51

    PubMed  CAS  Google Scholar 

  73. Bart J, Groen HJ, Hendrikse NH, van der Graaf WT, Vaalburg W, de Vries EG: The blood-brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 2000, 26(6):449–462

    PubMed  CAS  Google Scholar 

  74. Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, et al.: Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 2000, 100(3):323–331

    CAS  Google Scholar 

  75. Shibata S: Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol (Berl) 1989, 78(6):561–571

    CAS  Google Scholar 

  76. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998, 95(8):4607–4612

    PubMed  CAS  Google Scholar 

  77. Becker I, Becker KF, Meyermann R, Hollt V The multidrug-resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol (Berl) 1991, 82(6):516–519

    CAS  Google Scholar 

  78. Haga S, Hinoshita E, Ikezaki K, Fukui M, Scheffer GL, Uchiumi T, et al.: Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. Jpn J Cancer Res 2001, 92(2):211–219

    PubMed  CAS  Google Scholar 

  79. Regina A, Demeule M, Laplante A, Jodoin J, Dagenais C, Berthelet F, et al.: Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev 2001, 20(1–2):13–25

    PubMed  CAS  Google Scholar 

  80. Toth K, Vaughan MM, Peress NS, Slocum HK, Rustum YM: MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am J Pathol 1996, 149(3):853–858

    PubMed  CAS  Google Scholar 

  81. Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, et al.: Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007, 25(16):2295–2305

    PubMed  CAS  Google Scholar 

  82. Jain RK, Tong RT, Munn LL: Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 2007, 67(6):2729–2735

    PubMed  CAS  Google Scholar 

  83. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 2001, 61(16):6020–6024

    PubMed  CAS  Google Scholar 

  84. Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, et al.: Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006, 26(3):310–320

    PubMed  Google Scholar 

  85. Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG: Genetic and hypoxic regulation of angiogenesis in gliomas. J Neurooncol 2004, 70(2):229–243

    PubMed  Google Scholar 

  86. Kowanetz M, Ferrara N: Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 2006, 12(17):5018–5022

    PubMed  CAS  Google Scholar 

  87. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, et al.: The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996, 271(13):7788–7795

    PubMed  CAS  Google Scholar 

  88. Park JE, Keller GA, Ferrara N: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993, 4(12):1317–1326

    PubMed  CAS  Google Scholar 

  89. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al.: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000, 2(10):737–744

    PubMed  CAS  Google Scholar 

  90. Salven P, Orpana A, Joensuu H: Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res 1999, 5(3):487–491

    PubMed  CAS  Google Scholar 

  91. Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ, et al.: Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997, 3(12 Pt 1):2187–2190

    PubMed  CAS  Google Scholar 

  92. Mohle R, Green D, Moore MA, Nachman RL, Rafii S: Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 1997, 94(2):663–668

    PubMed  CAS  Google Scholar 

  93. Leon SP, Folkerth RD, Black PM: Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996, 77(2):362–372

    PubMed  CAS  Google Scholar 

  94. Plate KH, Breier G, Weich HA, Mennel HD, Risau W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 1994, 59(4):520–529

    PubMed  CAS  Google Scholar 

  95. Plate KH, Risau W: Angiogenesis in malignant gliomas. Glia 1995, 15(3):339–347

    PubMed  CAS  Google Scholar 

  96. Plate KH, Breier G, Millauer B, Ullrich A, Risau W: Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 1993, 53(23):5822–5827

    PubMed  CAS  Google Scholar 

  97. Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, et al.: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 1995, 55(5):1189–1193

    PubMed  CAS  Google Scholar 

  98. Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, et al.: Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999, 84(1):10–18

    PubMed  CAS  Google Scholar 

  99. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D: Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2005, 15(4):297–310

    Article  PubMed  CAS  Google Scholar 

  100. Kargiotis O, Rao JS, Kyritsis AP: Mechanisms of angiogenesis in gliomas. J Neurooncol 2006, 78(3):281–293

    PubMed  CAS  Google Scholar 

  101. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359(6398):843–845

    PubMed  CAS  Google Scholar 

  102. Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med 2003, 9(6):669–676

    PubMed  CAS  Google Scholar 

  103. Parliament MB, Allalunis-Turner MJ, Franko AJ, Olive PL, Mandyam R, Santos C, et al.: Vascular endothelial growth factor expression is independent of hypoxia in human malignant glioma spheroids and tumours. Br J Cancer 2000, 82(3):635–641

    PubMed  CAS  Google Scholar 

  104. Mizukami Y, Kohgo Y, Chung DC: Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 2007, 13(19):5670–5674

    PubMed  CAS  Google Scholar 

  105. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL: Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 2000, 88(11):2606–2618

    PubMed  CAS  Google Scholar 

  106. Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995, 92(12):5510–5514

    PubMed  CAS  Google Scholar 

  107. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002, 295(5556):858–861

    PubMed  CAS  Google Scholar 

  108. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG: Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology 2005, 7(2):134–153

    PubMed  CAS  Google Scholar 

  109. Pore N, Liu S, Haas-Kogan DA, O’Rourke DM, Maity A: PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res 2003, 63(1):236–241

    PubMed  CAS  Google Scholar 

  110. Maity A, Pore N, Lee J, Solomon D, O’Rourke DM: Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3’-kinase and distinct from that induced by hypoxia. Cancer Res 2000, 60(20):5879–5886

    PubMed  CAS  Google Scholar 

  111. Ostman A: PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 2004, 15(4):275–286

    PubMed  Google Scholar 

  112. Ma D, Nutt CL, Shanehsaz P, Peng X, Louis DN, Kaetzel DM: Autocrine platelet-derived growth factor-dependent gene expression in glioblastoma cells is mediated largely by activation of the transcription factor sterol regulatory element binding protein and is associated with altered genotype and patient survival in human brain tumors. Cancer Res 2005, 65(13):5523–5534

    PubMed  CAS  Google Scholar 

  113. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003, 111(9):1287–1295

    PubMed  CAS  Google Scholar 

  114. Abounader R, Laterra J: Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncology 2005, 7(4):436–451

    PubMed  CAS  Google Scholar 

  115. Trojan J, Cloix JF, Ardourel MY, Chatel M, Anthony DD: Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 2007, 145(3):795–811

    PubMed  CAS  Google Scholar 

  116. Clarke K, Smith K, Gullick WJ, Harris AL Mutant epidermal growth factor receptor enhances induction of vascular endothelial growth factor by hypoxia and insulin-like growth factor-1 via a PI3 kinase dependent pathway. Br J Cancer 2001, 84(10):1322–1329

    PubMed  CAS  Google Scholar 

  117. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al.: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006, 9(4):287–300

    PubMed  CAS  Google Scholar 

  118. Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, et al.: Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 1994, 344(8915):82–86

    PubMed  CAS  Google Scholar 

  119. Lamszus K, Heese O, Westphal M: Angiogenesis-related growth factors in brain tumors. Cancer Treat Res 2004, 117:169–190

    PubMed  CAS  Google Scholar 

  120. Zagzag D, Miller DC, Sato Y, Rifkin DB, Burstein DE: Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Res 1990, 50(22):7393–7398

    PubMed  CAS  Google Scholar 

  121. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, et al.: Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 2002, 109(6):777–785

    PubMed  CAS  Google Scholar 

  122. Grau SJ, Trillsch F, Herms J, Thon N, Nelson PJ, Tonn JC, et al.: Expression of VEGFR3 in glioma endothelium correlates with tumor grade. J Neurooncol 2007, 82(2):141–150

    PubMed  CAS  Google Scholar 

  123. Dvorak HF: Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002, 20(21):4368–4380

    PubMed  CAS  Google Scholar 

  124. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997, 100(12):3131–3139

    PubMed  CAS  Google Scholar 

  125. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al.: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275(5302):964–967

    PubMed  CAS  Google Scholar 

  126. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P: Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 2004, 104(7):2084–2086

    PubMed  CAS  Google Scholar 

  127. Bertolini F, Shaked Y, Mancuso P, Kerbel RS: The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006, 6(11):835–845

    PubMed  CAS  Google Scholar 

  128. Santarelli JG, Udani V, Yung CY, Cheshier S, Wagers A, Brekken RA, et al.: Preuss Resident Research Award: bone marrow-derived Flk-1-expressing CD34+ cells contribute to the endothelium of tumor vessels in mouse brain. Clin Neurosurg 2005, 52:384–388

    PubMed  CAS  Google Scholar 

  129. Lamszus K, Heese O, Westphal M: Angiogenesis-related growth factors in brain tumors. Cancer Treat Res 2004, 117:169–190

    PubMed  CAS  Google Scholar 

  130. Stefanik DF, Rizkalla LR, Soi A, Goldblatt SA, Rizkalla WM: Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 1991, 51(20):5760–5765

    PubMed  CAS  Google Scholar 

  131. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, et al.: Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996, 271(45):28220–28228

    PubMed  CAS  Google Scholar 

  132. Brat DJ, Bellail AC, Van Meir EG: The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncology 2005, 7(2):122–133

    PubMed  CAS  Google Scholar 

  133. Desbaillets I, Diserens AC, de Tribolet N, Hamou MF, Van Meir EG: Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 1999, 18(7):1447–1456

    PubMed  CAS  Google Scholar 

  134. Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, et al.: Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J Neurooncol 2003, 62(3):297–303

    PubMed  Google Scholar 

  135. Heyns AD, Eldor A, Vlodavsky I, Kaiser N, Fridman R, Panet A: The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Studies with vascular smooth muscle cells and endothelial cells. Exp Cell Res 1985, 161(2):297–306

    PubMed  CAS  Google Scholar 

  136. Deininger MH, Weller M, Streffer J, Mittelbronn M, Meyermann R: Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol (Berl) 1999, 98(3):240–244

    CAS  Google Scholar 

  137. Harrigan MR: Angiogenic factors in the central nervous system. Neurosurgery 2003, 53(3):639–660; discussion 660–61

    PubMed  Google Scholar 

  138. Guo W, Giancotti FG: Integrin signalling during tumour progression. Nat Rev 2004, 5(10):816–826

    CAS  Google Scholar 

  139. Lakka SS, Gondi CS, Rao JS: Proteases and glioma angiogenesis. Brain Pathol 2005, 15(4):327–341

    Article  PubMed  CAS  Google Scholar 

  140. Serini G, Valdembri D, Bussolino F: Integrins and angiogenesis: a sticky business. Exp Cell Res 2006, 312(5):651–658

    PubMed  CAS  Google Scholar 

  141. Wang D, Anderson JC, Gladson CL The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 2005, 15(4):318–326

    Article  PubMed  CAS  Google Scholar 

  142. Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al.: Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001, 49(2):380–389; discussion 390

    PubMed  CAS  Google Scholar 

  143. Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R, et al.: Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 2005, 11(17):6270–6279

    PubMed  CAS  Google Scholar 

  144. Stan AC, Nemati MN, Pietsch T, Walter GF, Dietz H: In vivo inhibition of angiogenesis and growth of the human U-87 malignant glial tumor by treatment with an antibody against basic fibroblast growth factor. J Neurosurg 1995, 82(6):1044–1052

    PubMed  CAS  Google Scholar 

  145. Yamada SM, Yamaguchi F, Brown R, Berger MS, Morrison RS: Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 1999, 28(1):66–76

    PubMed  CAS  Google Scholar 

  146. Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K: Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res 2003, 9(12):4578–4585

    PubMed  CAS  Google Scholar 

  147. Bello L, Lucini V, Giussani C, Carrabba G, Pluderi M, Scaglione F, et al.: IS20I, a specific alphavbeta3 integrin inhibitor, reduces glioma growth in vivo. Neurosurgery 2003;52(1):177–185; discussion 185–186

    PubMed  Google Scholar 

  148. Portnow J, Suleman S, Grossman SA, Eller S, Carson K: A cyclooxygenase-2 (COX-2) inhibitor compared with dexamethasone in a survival study of rats with intracerebral 9L gliosarcomas. Neuro-oncology 2002, 4(1):22–25

    PubMed  CAS  Google Scholar 

  149. Bello L, Giussani C, Carrabba G, Pluderi M, Lucini V, Pannacci M, et al.: Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors. Clin Cancer Res 2002, 8(11):3539–3548

    PubMed  CAS  Google Scholar 

  150. Read TA, Farhadi M, Bjerkvig R, Olsen BR, Rokstad AM, Huszthy PC, et al.: Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res 2001, 61(18):6830–6837

    PubMed  CAS  Google Scholar 

  151. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM: Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 1998, 58(20):4654–4659

    PubMed  CAS  Google Scholar 

  152. Haviv F, Bradley MF, Kalvin DM, Schneider AJ, Davidson DJ, Majest SM, et al.: Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. J Med Chem 2005, 48(8):2838–2846

    PubMed  CAS  Google Scholar 

  153. Willett CG, Kozin SV, Duda DG, di Tomaso E, Kozak KR, Boucher Y, et al.: Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 2006, 33(5 Suppl 10):S35–40

    PubMed  CAS  Google Scholar 

  154. Kerbel RS: Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 2006, 312(5777):1171–1175

    PubMed  CAS  Google Scholar 

  155. Shaked Y, Kerbel RS: Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res 2007, 67(15):7055–7058

    PubMed  CAS  Google Scholar 

  156. Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, et al.: Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999, 59(14):3374–3378

    PubMed  CAS  Google Scholar 

  157. Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001, 7(9):987–989

    PubMed  CAS  Google Scholar 

  158. Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307(5706):58–62

    PubMed  CAS  Google Scholar 

  159. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004, 6(6):553–563

    PubMed  CAS  Google Scholar 

  160. Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L, et al.: Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 1998, 95(18):10820–10825

    PubMed  CAS  Google Scholar 

  161. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004, 64(11):3731–3736

    PubMed  CAS  Google Scholar 

  162. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004, 10(2):145–147

    PubMed  CAS  Google Scholar 

  163. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al.: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  164. Singh SK, Clarke ID, Hide T, Dirks PB: Cancer stem cells in nervous system tumors. Oncogene 2004, 23(43):7267–7273

    PubMed  CAS  Google Scholar 

  165. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al.: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004, 64(19):7011–7021

    PubMed  CAS  Google Scholar 

  166. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al.: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006, 66(16):7843–7848

    PubMed  CAS  Google Scholar 

  167. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al.: A perivascular niche for brain tumor stem cells. Cancer Cell 2007, 11(1):69–82

    PubMed  CAS  Google Scholar 

  168. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS: Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 2007, 67(8):3560–3564

    PubMed  CAS  Google Scholar 

  169. Gilbertson RJ, Rich JN: Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007, 7(10):733–736

    PubMed  CAS  Google Scholar 

  170. Jain RK, Duda DG, Clark JW, Loeffler JS: Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 2006, 3(1):24–40

    PubMed  CAS  Google Scholar 

  171. Goli KJ, Desjardins A, Herndon JE, Rich J, Reardon DA, Quinn JA, et al.: Phase II trial of bevacizumab and irinotecan in the treatment of malignant gliomas. In 43rd Annual Meeting of American Society of Clinical Oncology. Edited by Grunberg SM. Chicago, IL; 2007:75S

  172. Friedman HS, Petros WP, Friedman AH, Schaaf LJ, Kerby T, Lawyer J, et al.: Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999, 17(5):1516–1525

    PubMed  CAS  Google Scholar 

  173. Batchelor TT, Gilbert MR, Supko JG, Carson KA, Nabors LB, Grossman SA, et al.: Phase 2 study of weekly irinotecan in adults with recurrent malignant glioma: final report of NABTT 97-11. Neuro-oncol 2004, 6(1):21–27

    PubMed  CAS  Google Scholar 

  174. Cloughesy TF, Filka E, Kuhn J, Nelson G, Kabbinavar F, Friedman H, et al.: Two studies evaluating irinotecan treatment for recurrent malignant glioma using an every-3-week regimen. Cancer 2003, 97(9 Suppl):2381–2386

    PubMed  CAS  Google Scholar 

  175. Prados MD, Lamborn K, Yung WK, Jaeckle K, Robins HI, Mehta M, et al.: A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro-oncology 2006, 8(2):189–193

    PubMed  CAS  Google Scholar 

  176. Chamberlain MC Salvage chemotherapy with CPT-11 for recurrent glioblastoma multiforme. J Neurooncol 2002, 56(2):183–188

    PubMed  Google Scholar 

  177. Gilbert MR, Supko JG, Batchelor T, Lesser G, Fisher JD, Piantadosi S, et al. Phase I clinical and pharmacokinetic study of irinotecan in adults with recurrent malignant glioma. Clin Cancer Res 2003, 9(8):2940–2949

    PubMed  CAS  Google Scholar 

  178. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG: Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990, 8(7):1277–1280

    PubMed  CAS  Google Scholar 

  179. Yung WK, Prados MD, Yaya-Tur R, Rosenfeld SS, Brada M, Friedman HS, et al.: Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J Clin Oncol 1999, 17(9):2762–2771

    PubMed  CAS  Google Scholar 

  180. Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, et al.: A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000, 83(5):588–593

    PubMed  CAS  Google Scholar 

  181. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, et al.: Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 1999, 17(8):2572–2578

    PubMed  CAS  Google Scholar 

  182. Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, et al.: Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 2001, 61(6):2413–2419

    PubMed  CAS  Google Scholar 

  183. Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD: Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 2001, 61(1):39–44

    PubMed  CAS  Google Scholar 

  184. Gingras MC, Roussel E, Bruner JM, Branch CD, Moser RP: Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 1995, 57(1–2):143–153

    PubMed  CAS  Google Scholar 

  185. Gladson CL: Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 1996, 55(11):1143–1149

    Article  PubMed  CAS  Google Scholar 

  186. Tucker GC: Integrins: molecular targets in cancer therapy. Curr Oncol Rep 2006, 8(2):96–103

    PubMed  CAS  Google Scholar 

  187. Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak-Kragten AT, Eijkenboom WM, et al.: The Incidence of Pseudo-progression in a cohort of malignant glioma patients treated with chemo-radiation with temozolomide. In The American Society of Clinical Oncology 43rd Annual Meeting. Edited by Grunberg SM. Chicago, IL: Lisa Greaves; 2007:77s

  188. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, et al.: 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006, 47(6):904–911

    PubMed  CAS  Google Scholar 

  189. Popperl G, Kreth FW, Herms J, Koch W, Mehrkens JH, Gildehaus FJ, et al.: Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 2006, 47(3):393–403

    PubMed  Google Scholar 

  190. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al.: Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005, 46(6):945–952

    PubMed  CAS  Google Scholar 

  191. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al.: Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002, 51(4):912–919; discussion 919–920

    PubMed  Google Scholar 

  192. Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, et al.: Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006, 27(2):409–417

    PubMed  CAS  Google Scholar 

  193. Hylton N: Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 2006, 24(20):3293–3298

    PubMed  CAS  Google Scholar 

  194. Jackson A, O’Connor JP, Parker GJ, Jayson GC: Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 2007, 13(12):3449–3459

    PubMed  Google Scholar 

  195. Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, et al.: Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 2001, 51(2):478–482

    PubMed  CAS  Google Scholar 

  196. Essig M, Wenz F, Scholdei R, Bruning R, Berchtenbreiter C, Meurer M, et al.: Dynamic susceptibility contrast-enhanced echo-planar imaging of cerebral gliomas. Effect of contrast medium extravasation. Acta Radiol 2002, 43(4):354–359

    PubMed  CAS  Google Scholar 

  197. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG: Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002, 178(3):711–716

    PubMed  Google Scholar 

  198. Warmuth C, Gunther M, Zimmer C: Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003, 228(2):523–532

    PubMed  Google Scholar 

  199. Brubaker LM, Bullitt E, Yin C, Van Dyke T, Lin W: Magnetic resonance angiography visualization of abnormal tumor vasculature in genetically engineered mice. Cancer Res 2005, 65(18):8218–8223

    PubMed  CAS  Google Scholar 

  200. Bullitt E, Reardon DA, Smith JK: A review of micro- and macrovascular analyses in the assessment of tumor-associated vasculature as visualized by MR. NeuroImage 2007, 37(Suppl 1):S116–S119

    PubMed  Google Scholar 

  201. Verheul HM, Pinedo HM: Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 2007, 7(6):475–485

    PubMed  CAS  Google Scholar 

  202. Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, et al.: Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 2007, 99(16):1232–1239

    PubMed  Google Scholar 

  203. Glusker P, Recht L, Lane B: Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 2006, 354(9):980–982; discussion 982

    PubMed  CAS  Google Scholar 

  204. Ozcan C, Wong SJ, Hari P: Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 2006, 354(9):980–982; discussion 982

    PubMed  Google Scholar 

  205. Jubb AM, Oates AJ, Holden S, Koeppen H: Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 2006, 6(8):626–635

    PubMed  CAS  Google Scholar 

  206. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH: Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 2005, 97(3):172–187

    Article  PubMed  CAS  Google Scholar 

  207. Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, et al.: Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 2006, 24(2):217–227

    PubMed  CAS  Google Scholar 

  208. Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, et al.: Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005, 23(31):8136–8139

    PubMed  Google Scholar 

  209. Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al.: Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006, 24(1):25–35

    PubMed  CAS  Google Scholar 

  210. Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, et al.: Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006, 24(1):16–24

    PubMed  CAS  Google Scholar 

  211. Drevs J, Zirrgiebel U, Schmidt-Gersbach CI, Mross K, Medinger M, Lee L, et al.: Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 2005, 16(4):558–565

    PubMed  CAS  Google Scholar 

  212. Duda DG, Cohen KS, di Tomaso E, Au P, Klein RJ, Scadden DT, et al.: Differential CD146 expression on circulating versus tissue endothelial cells in rectal cancer patients: implications for circulating endothelial and progenitor cells as biomarkers for antiangiogenic therapy. J Clin Oncol 2006, 24(9):1449–1453

    PubMed  CAS  Google Scholar 

  213. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, et al.: Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 2001, 20(1–2):79–86

    PubMed  CAS  Google Scholar 

  214. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, et al.: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 2004, 18(2):338–340

    PubMed  CAS  Google Scholar 

  215. Huang J, Soffer SZ, Kim ES, McCrudden KW, Huang J, New T, et al.: Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2004, 2(1):36–42

    PubMed  CAS  Google Scholar 

  216. De Bouard S, Guillamo JS, Christov C, Lefevre N, Brugieres P, Gola E, et al.: Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther 2003, 14(9):883–895

    PubMed  Google Scholar 

  217. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003, 3(4):347–361

    PubMed  Google Scholar 

  218. Lamszus K, Kunkel P, Westphal M: Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 2003, 88:169–177

    PubMed  CAS  Google Scholar 

  219. Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, et al.: Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000, 2(4):306–314

    PubMed  CAS  Google Scholar 

  220. Farhadi MR, Capelle HH, Erber R, Ullrich A, Vajkoczy P: Combined inhibition of vascular endothelial growth factor and platelet-derived growth factor signaling: effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J Neurosurg 2005, 102(2):363–370

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Reardon MD.

Additional information

Supported by National Institutes of Health Grant nos. 1-P50-CA108786-01, NS20023, and CA11898 and by Grant no. MO1 RR 30 through the General Clinical Research Centers Program, National Center for Research Resources, National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reardon, D.A., Desjardins, A., Rich, J.N. et al. The Emerging Role of Anti-Angiogenic Therapy for Malignant Glioma . Curr. Treat. Options in Oncol. 9, 1–22 (2008). https://doi.org/10.1007/s11864-008-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-008-0052-6

Keywords

Navigation