Skip to main content

Advertisement

Log in

Nutrigénomique: cas pour un terrain commun à la maladie cardiovasculaire et au cancer

Nutrigenomics: a case for the common soil between cardiovascular disease and cancer

  • Nutrigénomique
  • Published:
Bio tribune magazine

Résumé

La limite entre la santé et la maladie est souvent établie par un équilibre complexe entre deux éléments, génétique d’une part et style de vie de l’autre. Mieux le comprendre signifie mettre de nouvelles armes, souvent essentielles, à la portée des médecins et de leurs patients. Ceci implique aussi l’adaptation de thérapies afin de trouver le médicament approprié pour le patient et la meilleure stratégie de prévention qui sera efficace pour lui ou pour elle. La nutrigénomique est une approche pour individualiser ou personnaliser l’alimentation et la nutrition, et la santé en fin de compte, en ajustant l’alimentation au génotype individuel. Dans cette revue, nous présentons l’interaction entre certains polymorphismes génétiques et un certain régime alimentaire, et un accroissement du risque cardiovasculaire ou d’un cancer. Il est certainement clair, à présent, qu’un grand nombre de composants des aliments bioactifs peut comporter un risque ou présenter une protection aux différents stades du processus de formation de l’athérosclérose et du cancer. Nous fournissons, dans cette étude, quelques exemples d’interactions gène/alimentation qui sont pertinents pour le risque cardiovasculaire et pour le cancer, car un terrain commun pourrait exister entre la genèse de la maladie cardiovasculaire et certains types de cancers (principalement ceux du tractus gastro-intestinal et ceux dépendant des hormones).

Abstract

The border between health and disease is often set by a complex equilibrium between two elements genetics on one hand, lifestyle on the other, To know it better, means to give new weapons, often crucial, in the hands of the doctors and their patients. It also means to adjust therapies, to find out which drug is good for a patient and which prevention strategy will work better for him/her. Nutrigenomics is an approach to individualize or personalize food and nutrition, and ultimately health, by tailoring the food to the individual genotype. In this review, we present the interaction between certain genetic polymorphisms and diet and increased cardiovascular or cancer risk. It is, indeed, now clear that a large number of bioactive food components may provide risk or protection at several stages of both atherosclerosis and cancer formation processes. We are giving here few examples of gene-food interactions relevant for both the risk of cardiovascular disease and cancer, since a common soil could exist in the genesis of cardiovascular disease and of some types of cancer (mainly gastrointestinal tract and hormonedependent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références et lectures recommandées

  1. Elliott R, Ong TJ (2002) Nutritional genomics. BMJ 324: 1438

    Article  PubMed  Google Scholar 

  2. Stover PL (2006) Influence of human genetic variations on nutritional requirements. Am J Clin Nutr 83: 436S–442S

    PubMed  CAS  Google Scholar 

  3. Corthesy-Theulaz I, den Dunnen JT, Ferre P, Geurts JM, Muller M, van Belzen N et al (2005) Nutrigenomics: the impact of biomics technology on nutrition research. Ann Nutr Metab 296: 1858–1866

    Google Scholar 

  4. Ghosh D, Skinner MA, Laing WA (2007) Pharmacogenomics and nutrigenomics: synergies and differences. Eur J Clin Nutr 61: 567–574

    Article  PubMed  CAS  Google Scholar 

  5. Donati MB (2003) Cancer and cardiovascular disease: does a common soil exist? Pathophysiol Haemost Thromb 33(suppl 2): 1

    Google Scholar 

  6. Ordovas JM (2006) Genetic interactions with diet influence the risk of cardiovascular disease. Am J Clin Nutr 83(suppl 2): 443S–446S

    PubMed  CAS  Google Scholar 

  7. Ye SQ, Kwiterovich PO Jr (2000) Influence of genetic polymorphisms on responsiveness to dietary fat and cholesterol. Am J Clin Nutr 72:1275S–1284S

    PubMed  CAS  Google Scholar 

  8. Kwiterovich PO Jr, Coresh J, Smith HH, Bachorik PS, Derby CA, Pearson TA (1992) Comparison of the plasma levels of apolipoproteins B and A-I, and other risk factors in men and women with premature coronary artery disease. Am J Cardiol 69: 1015–1021

    Article  PubMed  Google Scholar 

  9. Wilson PW, Abbott RD, Castelli WP (1988) High density lipoprotein cholesterol and mortality. The Framingham heart study. Ateriosclerosis 8: 737–741

    CAS  Google Scholar 

  10. Juo SH, Wyszynski DF, Beaty TH, Bailey-Wilson JE (1999) Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. Am J Med Genet 82: 235–241

    Article  PubMed  CAS  Google Scholar 

  11. Matsunaga A, Sasaki J, Han H et al (1999) Compound heterozygosity for an apolipoprotein A1 gene promoter mutation and a structural nonsense mutation with apolipoprotein A1 deficiency. Arterioscler Thromb Vasc Biol 19: 348–355

    PubMed  CAS  Google Scholar 

  12. Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25: 317–340

    Article  PubMed  CAS  Google Scholar 

  13. Sessler AM, Ntambi JM (1998) Polyunsaturated fatty acid regulation of gene expression. J Nutr 128: 923–6

    PubMed  CAS  Google Scholar 

  14. Mata P, Lopez-Miranda J, Pocovi M et al (1998) Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis 137: 367–376

    Article  PubMed  CAS  Google Scholar 

  15. Ordovas JM, Corella D, Cupples LA et al (2002) Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDLcholesterol concentrations in a sex-specific manner: the Framingham study. Am J Clin Nutr 75: 38–46

    PubMed  CAS  Google Scholar 

  16. Rensen PC, van Dijk KW, Havekes LM (2005) APOA5: low concentration, high impact. Arterioscler Thromb Vasc Biol 25: 2445–2447

    Article  PubMed  CAS  Google Scholar 

  17. Shaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, Havekes LM, Groen AK, van Dijk Kw (2004) APOA5 reduces plasma triglycerides by inhibiting VLDL-TG production and stimulating lipoprotein lipase-mediated VLDLTG hydrolysis. J Biol Chem 279: 27941–27947

    Article  Google Scholar 

  18. Weinberg RB, Cook VR, Beckstead JA, Martin DD, Gallagher JW, Shelness GS, Ryan RO (2003) Structure and interfacial properties of human APOA5. J Biol Chem 278: 34438–34444

    Article  PubMed  CAS  Google Scholar 

  19. Grooskopf I, Barouk N, Lee SJ, Kamari Y, Harats D, Rubin EM, Pennacchio LA, Cooper AD (2005) APOA5 deficiency results in marked hypetriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol 25: 2573–2579

    Article  Google Scholar 

  20. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J (2005) APOA5 accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 280: 21553–21560

    Article  PubMed  CAS  Google Scholar 

  21. Lai C-Q, Corella D, Demissie S et al (2006) Dietary Intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size. Circulation 113: 2062–2070

    Article  PubMed  CAS  Google Scholar 

  22. Lai CQ, Demissie S, Cupples LA, Zhu Y, Adiconis X, Parnell LD, Corella D, Ordovas JM (2004) Influnce of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham heart study. J Lipid Res 45: 2096–2105

    Article  PubMed  CAS  Google Scholar 

  23. Pennacchio LA, Oliver M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC (2002) Two independent APOA5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11: 3031–3038

    Article  PubMed  CAS  Google Scholar 

  24. Jang Y, Kim JY, Kim OY, Lee JE, Cho H, Ordovas JM, Lee JH (2004) The −1131T[C polymorphism in the APOA5 gene is associated with post-prandial hypertricylglycerolemia; elevated small, dense LDL concentrations; and oxidative stress in non-obese Korean men. Am J Clin Nutr 80: 832–840

    PubMed  CAS  Google Scholar 

  25. Martin S, Nicaud V, Humphries SE, Talmud PJ, on behalf of the EARS group (2003) Contribution of APOA5 gene variants to plasma triglyceride determination and to response to both fat and glucose tolerance challenges. Biochim Biophis Acta 1637: 217–225

    CAS  Google Scholar 

  26. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. New Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  27. Moncada S (1992) The L-arginine-nitric oxide pathway. Acta Physiol Scand 145: 201–227

    Article  PubMed  CAS  Google Scholar 

  28. Shibuki K, Okada D (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349: 326–328

    Article  PubMed  CAS  Google Scholar 

  29. Kihara M, Umemura S, Kadota T, Yabana M, Tamura K, Nyui N, Ogawa N, Murakami K, Fukamizu A, Ishii M (1997) The neuronal isoform of constitutive nitric oxide synthase is up-regulated in the macula densa of angiotensinogen gene-knockout mice. Lab Invest 76: 285–294

    PubMed  CAS  Google Scholar 

  30. Quyyumi AA, Dakak N, Andrews NP, Husain S, Arora S, Gil-ligan DM, Panza JA, Cannon RO III (1995) Nitric oxide activity in the human coronary circulation. J Clin Invest 95: 1747–1755

    Article  PubMed  CAS  Google Scholar 

  31. Vallance P, Collier J, Moncada S (1989) Effects of endotheliumderived nitric oxide on peripheral arteriolar tone in man. Lancet 2: 997–1000

    Article  PubMed  CAS  Google Scholar 

  32. Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, Yoshimura M, Motoyama T, Inobe Y, Kawano H (1996) Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 94: 266–272

    PubMed  CAS  Google Scholar 

  33. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cycling guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Article  PubMed  CAS  Google Scholar 

  34. Furlong B, Henderson AH, Lewis MJ, Smith JA (1987) Endotheliumderived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90: 687–692

    PubMed  CAS  Google Scholar 

  35. Yao S-K, Ober CJ, Krishnaswami A, Ferguson JJ, Anderson V, Golino P, Buja LM, Willerson JT (1992) Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endhotelium-injured arteries. Circulation 86: 1302–1309

    PubMed  CAS  Google Scholar 

  36. Radomski MW, Palmer RMJ, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endhotelium. Lancet 2: 1057–1058

    Article  PubMed  CAS  Google Scholar 

  37. Hibi K, Ishigami T, Tamura K, Mizushima S et al (1998) Endothelial nitric oxide synthase gene polimorphism and acute myocardial infarction. Hypertension 32: 521–526

    PubMed  CAS  Google Scholar 

  38. Hingorani AD, Liang CF, Fatibene J et al (1999) A common variant of the endothelial nitric oxide synthase (Glu298?Asp) is a major risk factor for coronary artery disease in the UK. Circulation 100: 1515–1520

    PubMed  CAS  Google Scholar 

  39. Leeson CP et al (2002) Glu298Asp endothelial nitric oxide synthase gene polymorphism interacts with environmental and dietary factors to influence endothelial function. Cir Res 90: 1153–1158

    Article  CAS  Google Scholar 

  40. Yasue H, Yoshimura M, Sugiyama S, Sumida H, Okumura K, Ogawa H, Kugiyama K, Ogawa Y, Nakao K (1995) Association of a point mutation of the endothelial cell nitric oxide synthase (eNOS) gene with coronary spasm. Circulation 92: I–363. Abstract

    Google Scholar 

  41. Nestel PJ (2000) Fish oil and cardiovascular disease: lipids and arterial function. Am J Clin Nutr 71: 228–231

    Google Scholar 

  42. Goode GK, Garcia S, Heagerty AM (1997) Dietary supplementation with marine fish oil improves in vitro small artery endothelial function in hypercholesterolemic patients. Circulation 96: 2802–2807

    PubMed  CAS  Google Scholar 

  43. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871–1875

    Article  PubMed  CAS  Google Scholar 

  44. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237: 1171–1176

    Article  PubMed  CAS  Google Scholar 

  45. Lusis AJ (2000) Atherosclerosis. Nature 407: 233–241

    Article  PubMed  CAS  Google Scholar 

  46. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340: 115–126

    Article  PubMed  CAS  Google Scholar 

  47. Ferretti A, Nelson GJ, Scmidt PC, Kelley DS, Bartolini G, Flanagan VP (1997) Increased dietary arachidonic acid enhances the synthesis of vasoactive eicosanoids in humans. Lipids 32: 435–439

    Article  PubMed  CAS  Google Scholar 

  48. Kelley DS, Taylor PC, Nelson GJ, Mackey BE (1998) Arachidonic acid supplementation enhances synthesis of eicosanoids without suppressing immune functions in young healthy men. Lipids 33: 125–130

    Article  PubMed  CAS  Google Scholar 

  49. Dwyer JH, Allayee H, Dwyer KM et al (2004) Arachidonate 5lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 350: 29–37

    Article  PubMed  CAS  Google Scholar 

  50. Hedelin M, Chang ET, Wilklund F, Bellocco R et al (2006) Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism. Int J Cancer 120: 398–405

    Article  Google Scholar 

  51. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79: 935–945

    PubMed  CAS  Google Scholar 

  52. Simopoulos A, Cleland L (2003) Omega-6/omega-3 essential fatty acid ratio: the scientific evidence. Basel: Karger AG

    Google Scholar 

  53. Astorg P (2004) Dietary N-6 and N-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control 15: 367–386

    Article  PubMed  Google Scholar 

  54. Terry PD, Rohan TE, Wolk A (2003) Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other ormone-related cancers: a review of the epidemiologic evidence. Am J Clin Nutr 77: 532–543

    PubMed  CAS  Google Scholar 

  55. Terry PD, Terry JB, Rohan TE (2004) Long chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate: recent epidemiological studies, biological mechanisms, and directions for future research. J Nutr 134: S3412–S3420

    Google Scholar 

  56. Kirschenbaum A, Klausner AP, Lee R, Unger P, Yao S, Liu XH, Levine AC (2000) Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56: 671–676

    Article  PubMed  CAS  Google Scholar 

  57. Lee LM, Pan CC, Cheng CJ, Chi CW, Liu TY (2001) Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res 21: 1291–1294

    PubMed  CAS  Google Scholar 

  58. Mahmud S, Franco E, Aprikian A (2004) Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. Br J Cancer 90: 93–99

    Article  PubMed  CAS  Google Scholar 

  59. Gago-Dominguez M, Castelao JE, Sun CL et al (2004) Marine n3 fatty acid intake, gluthatione S-transferase polymorphisms and breast cancer risk in post-menopausal Chinese women in Singapore. Carcinogenesis 25: 2143–2147

    Article  PubMed  CAS  Google Scholar 

  60. Gonzales MJ, Schemmel RA, Gray JI, Dugan L-Jr, Sheffield LG, Welsch CW (1991) Effect of dietary fat on growth of MCF-7 and MDAMB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 12: 1231–1235

    Article  Google Scholar 

  61. Gonzalez MJ, Schemmel RA, Dugan L Jr, Gray JI, Welsch CW (1993) Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 28: 827–832

    Article  PubMed  CAS  Google Scholar 

  62. Chajes V, Sattler W, Stranzl A, Kostner GM (1995) Influence of n-3 fatty acids of the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat 34: 199–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lacoviello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacoviello, L., Santimone, I., Latella, M.C. et al. Nutrigénomique: cas pour un terrain commun à la maladie cardiovasculaire et au cancer. Bio trib. mag. 30, 41–46 (2009). https://doi.org/10.1007/s11834-009-0105-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-009-0105-6

Mots clés

Keywords

Navigation