Skip to main content

Advertisement

Log in

State-of-the-Art Machine Learning Techniques for Diagnosis of Alzheimer’s Disease from MR-Images: A Systematic Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is the type of dementia that affects the world's significant population and is expected to be increased worldwide. In recent years, the main focus of researchers is the early diagnosis of AD because of the unavailability of well-known causes and no permanent curative solution for AD-infected patients. A plethora of machine learning algorithms are utilized by various researchers to provide an accurate diagnosis of the patients who fall under the category of Healthy Controls (HC), Mild Cognitive Impairment (MCI), and AD. In this paper, many machine learning algorithms with a special focus on various feature extraction and fusion techniques are explored in detail, which are used by the researchers to investigate various categories of AD from the Magnetic Resonance Images (MRI). Therefore, a systematic review of different feature extraction methods such as statistical, spatial-based, and transform-based is presented in this paper. Further, various open-source standard datasets that researchers used to detect AD from medical images are also discussed in detail. As some of the feature extraction techniques mentioned above generate redundant and large feature sets that significantly affect the classification accuracy, therefore, in this paper, we have also discussed several dimensionality reduction methods available for the extraction of relevant features from medical images. Moreover, future directions are also provided to researchers to aid in the early detection of brain disorders which may be helpful to add productive years to the lives of AD-contaminated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sandhya P (2010) Data Mining Applications to cognitive disorders with special reference to Alzheimer's Disease. Doctoral Dissertation, Dr. MGR Educational and Research Institute Chennai

  2. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  Google Scholar 

  3. Budson AE, Solomon PR (2011) Memory loss E-book: A practical guide for clinicians. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  4. Berchtold NC, Cotman CW (1998) Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging 19(3):173–189

    Article  Google Scholar 

  5. Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6(2):67–77

    Article  Google Scholar 

  6. Jagust W (2013) Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 77(2):219–234

    Article  Google Scholar 

  7. McWhirter L, Ritchie C, Stone J, Carson A (2019) Functional cognitive disorders: a systematic review. Lancet Psychiatry Elsevier 0366(19):1–17

    Google Scholar 

  8. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208

    Article  Google Scholar 

  9. Wang X, Zhen X, Li Q, Shen D, Huang H (2018) Cognitive assessment prediction in Alzheimer’s disease by multi-layer multi-target regression. Neuroinformatics 16(3–4):285–294

    Article  Google Scholar 

  10. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  Google Scholar 

  11. Nanni L, Brahnam S, Salvatore C, Castiglioni I, Alzheimer’s Disease Neuroimaging Initiative (2019) Texture descriptors and voxels for the early diagnosis of Alzheimer’s disease. Artificial intelligence in medicine, 97:19-26

  12. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Mirra SS (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1–13

    Article  Google Scholar 

  13. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  Google Scholar 

  14. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Snyder PJ (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  Google Scholar 

  15. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Mohs RC (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Article  Google Scholar 

  16. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Park DC (2011) Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292

    Article  Google Scholar 

  17. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Initiative ADN (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781

    Article  Google Scholar 

  18. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Morris JC (2013) The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 9(5):111–194

    Article  Google Scholar 

  19. Cure S, Abrams K, Belger M, Happich M (2014) Systematic literature review and meta-analysis of diagnostic test accuracy in Alzheimer’s disease and other dementia using autopsy as the standard of truth. J Alzheimers Dis 42(1):169–182

    Article  Google Scholar 

  20. Falahati F, Westman E, Simmons A (2014) Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J Alzheimers Dis 41(3):685–708

    Article  Google Scholar 

  21. Arbabshirani MR, Plis S, Sui J, Calhoun VD (2017) Single-subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145:137–165

    Article  Google Scholar 

  22. Sarica A, Cerasa A, Quattrone A (2017) Random Forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review. Front Aging Neurosci 9:329

    Article  Google Scholar 

  23. Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C (2017) A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage 155:530–548

    Article  Google Scholar 

  24. Pellegrini E, Ballerini L, Hernandez MDCV, Chappell FM, González-Castro V, Anblagan D, Mair G (2018) Machine learning of neuroimaging for the assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dementia: Diagn, Assess Disease Monitor 10:519–535

    Article  Google Scholar 

  25. Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, Lin CT (2020) Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(1):1–35

  26. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, Tsolaki M, Evans A (2009) MRI measures of Alzheimer’s disease and the AddNeuroMed study. Ann N Y Acad Sci 1180(1):47–55

    Article  Google Scholar 

  27. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, Tsolaki M, Evans A (2011) The AddNeuroMed framework for multi-centre MRI assessment of Alzheimer’s disease: experience from the first 24 months. Int J Geriatr Psychiatry 26(1):75–82

    Article  Google Scholar 

  28. Lovestone S, Francis P, Strandgaard K (2007) Biomarkers for disease modification trials-The innovative medicines initiative and AddNeuroMed. J Nutr Health Aging 11(4):359

    Google Scholar 

  29. Lovestone S, Francis P, Kloszewska I, Mecocci P, Simmons A, Soininen H, Ward M (2009) AddNeuroMed—the European collaboration for the discovery of novel biomarkers for Alzheimer’s disease. Ann N Y Acad Sci 1180(1):36–46

    Article  Google Scholar 

  30. Rajeesh J, Moni RS, Gopalakrishnan T (2012) Discrimination of Alzheimer’s disease using hippocampus texture features from MRI. Asian. Biomedicine 6(1):87–94

    Google Scholar 

  31. Yang W, Lui RL, Gao JH, Chan TF, Yau ST, Sperling RA, Huang X (2011) Independent component analysis-based classification of Alzheimer’s disease MRI data. J Alzheimers Dis 24(4):775–783

    Article  Google Scholar 

  32. Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, Rei L, Cerello P (2011) Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage 58(2):469–480

    Article  Google Scholar 

  33. Chupin M, Gerardin E, Cuingnet R, Boutet C, Lemieux L, Lehericy S, Benali H, Garnero L, Colliot O (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6):579–587

    Article  Google Scholar 

  34. Liu X, Tosun D, Weiner MW, Schuff N, Initiative ADN (2013) Locally linear embedding (LLE) for MRI based Alzheimer’s disease classification. Neuroimage 83:148–157

    Article  Google Scholar 

  35. Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX (2011) An MRI-derived definition of MCI-to-AD conversion for long-term, the automatic prognosis of MCI patients. PLoS ONE 6(10):25074

    Article  Google Scholar 

  36. Fan Y, Batmanghelich N, Clark CM, Davatzikos C, Alzheimer’s Disease Neuroimaging Initiative (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage, 39(4):1731-1743

  37. Wolz R, Aljabar P, Hajnal JV, Lotjonen J, Rueckert D, Alzheimer’s Disease Neuroimaging Initiative (2012) Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Medical Image Analysis, 16(4):819-830

  38. Khedher L, Ramírez J, Gorriz JM, Brahim A, Segovia F, Alzheimer׳ s Disease Neuroimaging Initiative (2015) Early diagnosis of Alzheimer׳ s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151:139-150

  39. Ortiz A, Gorriz JM, Ramírez J, Martínez-Murcia FJ, Alzheimer’s Disease Neuroimaging Initiative (2013) LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease. Pattern Recognition Letters 34(14):1725-1733

  40. Vaithinathan K, Parthiban L, Initiative ADN (2019) A novel texture extraction technique with T1 weighted MRI for the classification of Alzheimer’s disease. J Neurosci Methods 318:84–99

    Article  Google Scholar 

  41. Nanni L, Zaffonato N, Salvatore C, Catigiloni I (2018) An ensemble of classifiers for the early diagnosis of Alzheimer's Disease. Machine Learning: Advances in Research and Applications, (3)

  42. Khedher L, IIllan IA, Gorriz JM, Ramírez J, Brahim A, Meyer-Baese A (2017) Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support. International Journal of Neural Systems, 27(3):1650050

  43. Schmitter D, Roche A, Marechal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Daducci A et al. (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. NeuroImage: Clinical 7:7–17

  44. Ahmed OB, Benois-Pineau J, Allard M, Amar CB, Catheline G, Alzheimer’s Disease Neuroimaging Initiative (2015) Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimedia Tools and Applications, 74(4):1249-1266

  45. Zhang J, Liu M, An L, Gao Y, Shen D (2017) Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J Biomed Health Inform 21(6):1607–1616

    Article  Google Scholar 

  46. Abdulkadir A, Mortamet B, Vemuri P, Jack CR, Krueger G, Kloppel S, Initiative ADN (2011) Effects of hardware heterogeneity on the performance of SVM Alzheimer’s disease classifier. Neuroimage 58(3):785–792

    Article  Google Scholar 

  47. Hidalgo-Munoz AR, Ramírez J, Gorriz JM, Padilla P (2014) Regions of interest computed by SVM wrapped method for Alzheimer’s disease examination from segmented MRI. Front Aging Neurosci 6:20

    Article  Google Scholar 

  48. Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, Soininen H, Lotjonen J, Initiative ADN (2011) Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE 6(10):25446

    Article  Google Scholar 

  49. Beheshti I, Demirel H, Alzheimer’s Disease Neuroimaging Initiative (2015) Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Computers in Biology and Medicine 64:208-216

  50. Xiao Z, Ding L, Lan T, Zhang C, Luo C, Qin Z (2017) Brain MR image classification for Alzheimer’s disease diagnosis based on multi-feature fusion. Computational and Mathematical Methods in Medicine

  51. Wee CY, Yap PT, Shen D, Initiative ADN (2013) Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp 34(12):3411–3425

    Article  Google Scholar 

  52. Alam S, Kwon GR, Initiative ADN (2017) Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. Int J Imaging Syst Technol 27(2):133–143

    Article  Google Scholar 

  53. McEvoy LK, Holland D, Hagler DJ, Fennema-Notestine C, Brewer JB, Dale AM (2011) Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology 259(3):834–843

    Article  Google Scholar 

  54. McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ, Holland D, Karow DS, Dale AM (2009) Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251(1):195–205

    Article  Google Scholar 

  55. Westman E, Aguilar C, Muehlboeck JS, Simmons A (2013) Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer’s disease and mild cognitive impairment. Brain Topogr 26(1):9–23

    Article  Google Scholar 

  56. Spulber G, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I et al (2013) An MRI-based index to measure the severity of Alzheimer’s disease-like structural pattern in subjects with mild cognitive impairment. J Intern Med 273(4):396–409

    Article  Google Scholar 

  57. Spulber G, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I et al (2011) AddNeuroMed and ADNI: similar patterns of Alzheimer’s atrophy and automated MRI classification accuracy in Europe and North America. Neuroimage 58(3):818–828

    Article  Google Scholar 

  58. Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 62(1):229–238

    Article  Google Scholar 

  59. Gorji HT, Haddadnia J (2015) A novel method for early diagnosis of Alzheimer’s disease based on a pseudo-Zernike moment from structural MRI. Neuroscience 305:361–371

    Article  Google Scholar 

  60. Koikkalainen J, Lotjonen J, Thurfjell L, Rueckert D, Waldemar G, Soininen H, Initiative ADN (2011) Multi-template tensor-based morphometry: application to the analysis of Alzheimer’s disease. Neuroimage 56(3):1134–1144

    Article  Google Scholar 

  61. Koikkalainen J, Polonen H, Mattila J, Van Gils M, Soininen H, Lotjonen J, Initiative ADN (2012) Improved classification of Alzheimer’s disease data via removal of nuisance variability. PLoS ONE 7(2):31112

    Article  Google Scholar 

  62. Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, Fischl B (2009) Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 132(8):2048–2057

    Article  Google Scholar 

  63. Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, Vellas B (2012) Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33(7):1203–1214

    Article  Google Scholar 

  64. Querbes O, Aubry F, Pariente J, Lotterie JA, Démonet JF, Duret V, Initiative ADN (2009) Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(8):2036–2047

    Article  Google Scholar 

  65. Liu M, Zhang D, Shen D, Initiative ADN (2012) Ensemble sparse classification of Alzheimer’s disease. Neuroimage 60(2):1106–1116

    Article  Google Scholar 

  66. Simpson IJA, Woolrich MW, Andersson JR, Groves AR, Schnabel J (2012) Ensemble learning incorporating uncertain registration. IEEE Trans Med Imaging 32(4):748–756

    Article  Google Scholar 

  67. Varol E, Gaonkar B, Erus G, Schultz R, Davatzikos C (2012) Feature ranking based nested support vector machine ensemble for medical image classification. In 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 146–149

  68. Cevik A, Weber GW, Eyuboglu BM, Oguz KK, Alzheimer’s Disease Neuroimaging Initiative (2017) Voxel-MARS: a method for early detection of Alzheimer’s disease by classification of structural brain MRI. Annals of Operations Research 258(1):31-57

  69. Daliri MR (2012) Automated diagnosis of Alzheimer disease using the scale-invariant feature transforms in magnetic resonance images. J Med Syst 36(2):995–1000

    Article  Google Scholar 

  70. Savio A, Garcia-Sebastian MT, Chyzyk D, Hernandez C, Grana M, Sistiaga A, De Munain AL, Villanua J (2011) Neurocognitive disorder detection based on feature vectors extracted from VBM analysis of structural MRI. Comput Biol Med 41(8):600–610

    Article  Google Scholar 

  71. Khagi B, Goo-Rak K, Lama R (2019) Comparative analysis of Alzheimer’s disease classification by CDR level using CNN, feature selection, and machine-learning techniques. Int J Imaging Syst Technol 29(3):297–310

    Article  Google Scholar 

  72. Zhang Y, Wang S, Phillips P, Dong Z, Ji G, Yang J (2015) Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed Signal Process Control 21:58–73

    Article  Google Scholar 

  73. Neffati S, Abdellafou KB, Jaffel I, Taouali O, Bouzrara K (2019) An improved machine learning technique based on downsized KPCA for Alzheimer’s disease classification. Int J Imaging Syst Technol 29(2):121–131

    Article  Google Scholar 

  74. Jha D, Kim JI, Kwon GR (2017) Diagnosis of Alzheimer’s disease using dual-tree complex wavelet transform, PCA, and feed-forward neural network. Journal of Healthcare Engineering

  75. Wang SH, Zhang Y, Li YJ, Jia WJ, Liu FY, Yang MM, Zhang YD (2018) Single slice-based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimedia Tools Appl 77(9):10393–10417

    Article  Google Scholar 

  76. Costafreda SG, Dinov LD, Tu Z, Shi Y, Liu CY, Kloszewska I, Mecocci P et al (2011) Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 56(1):212–219

    Article  Google Scholar 

  77. Aguilar C, Westman E, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kloszewska I et al (2013) Different multivariate techniques for automated classification of MRI data in Alzheimer’s disease and mild cognitive impairment. Psychiatry Res: Neuroimaging 212(2):89–98

    Article  Google Scholar 

  78. Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund LO, Simmons A, Vellas B (2011) Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups—the AddNeuroMed study. Neurobiol Aging 32(7):1198–1206

    Article  Google Scholar 

  79. Westman E, Simmons A, Zhang Y, Muehlboeck JS, Tunnard C, Liu Y, Collins L et al (2011) Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment, and healthy controls. Neuroimage 54(2):1178–1187

    Article  Google Scholar 

  80. Westman E, Cavallin L, Muehlboeck JS, Zhang Y, Mecocci P, Vellas B, Tsolaki M et al (2011) Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease. PLoS ONE 6(7):e22506

    Article  Google Scholar 

  81. Duchesne S, Caroli A, Geroldi C, Barillot C, Frisoni GB, Collins DL (2008) MRI-based automated computer classification of probable AD versus normal controls. IEEE Trans Med Imaging 27(4):509–520

    Article  Google Scholar 

  82. Zhang J, Yu C, Jiang G, Liu W, Tong L (2012) 3D texture analysis on MRI images of Alzheimer’s disease. Brain Imaging Behav 6(1):61–69

    Article  Google Scholar 

  83. Zhang YD, Chen S, Wang SH, Yang JF, Phillips P (2015) Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imaging Syst Technol 25(4):317–327

    Article  Google Scholar 

  84. Zhang YD, Wu L (2012) An MR brain images classifier via principal component analysis and kernel support vector machine. Progress Electromagn Res 130:369–388

    Article  Google Scholar 

  85. Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Article  Google Scholar 

  86. Zhang Y, Yang J, Wang S, Dong Z, Phillips P (2017) Pathological brain detection in MRI scanning via Hu moment invariants and machine learning. J Exp Theor Artif Intell 29(2):299–312

    Article  Google Scholar 

  87. El-Dahshan AES, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digital Signal Process 20(2):433–441

    Article  Google Scholar 

  88. Zhang YD, Wu L, Wang S (2011) Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Progress Electromagn Res 116:65–79

    Article  Google Scholar 

  89. Nayak DR, Dash R, Majhi B (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197

    Article  Google Scholar 

  90. Acharya UR, Fernandes SL, Weikoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, Yeong CH (2019) Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J Med Syst 43(9):302

    Article  Google Scholar 

  91. Magnin B, Lilia M, Kinkingnehun S, Pelegrini-Issac M, Colliot O, Sarazin M, Dubois B, Lehericy S, Benali H (2009) Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2):73–83

    Article  Google Scholar 

  92. Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR, Ashburner J, Frackowiak RS (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3):681–689

    Article  Google Scholar 

  93. Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29(4):514–523

    Article  Google Scholar 

  94. Ferrarini L, Palm WM, Olofsen H, Van Der Landen R, Buchem MA, Reiber JH, Admiraal-Behloul F (2008) Ventricular shape biomarkers for Alzheimer’s disease in clinical MR images. Magn Reson Med: Official J Int Soc Magn Reson Med 59(2):260–267

    Article  Google Scholar 

  95. Plant C, Teipel SJ, Oswald A, Bohm C, Meindl T, Mourao-Miranda J, Bokde AW, Hampel H, Ewers M (2010) Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage 50(1):162–174

    Article  Google Scholar 

  96. Oliveira J, Magalhaes PP, Nitrini R, Busatto G, Buchpiguel C, Sato JR et al (2010) Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. J Alzheimers Dis 19(4):1263–1272

    Article  Google Scholar 

  97. Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR (2008) Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39(3):1186–1197

    Article  Google Scholar 

  98. Feng F, Wang P, Zhao K, Zhou B, Yao H, Meng Q (2018) Radiomic features of hippocampal subregions in Alzheimer’s disease and amnestic mild cognitive impairment. Front Aging Neurosci 10:290

    Article  Google Scholar 

  99. Gerardin E, Chetelat G, Chupin M, Cuingnet R, Desgranges B, Kim HS, Eustache F (2009) Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47(4):1476–1486

    Article  Google Scholar 

  100. Ferrarini L, Frisoni GB, Pievani M, Reiber JH, Ganzola R, Milles J (2009) Morphological hippocampal markers for automated detection of Alzheimer’s disease and mild cognitive impairment converters in magnetic resonance images. J Alzheimers Dis 17(3):643–659

    Article  Google Scholar 

  101. Moller C, Pijnenburg YA, Van der Flier WM, Versteeg A, Tijms B, Munck CJ, Dopper E (2016) Alzheimer disease and behavioural variant frontotemporal dementia: an automatic classification based on cortical atrophy for single-subject diagnosis. Radiology 279(3):838–848

    Article  Google Scholar 

  102. Eckerstrom C, Andreasson U, Olsson E, Rolstad S, Blennow K, Zetterberg H, Malmgren H, Edman A, Wallin A (2010) Combination of hippocampal volume and cerebrospinal fluid biomarkers improves predictive value in mild cognitive impairment. Dement Geriatr Cogn Disord 29(4):294–300

    Article  Google Scholar 

  103. Oppedal K, Eftestol T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. International Journal of Biomedical Imaging

  104. Hirata Y, Matsuda H, Nemoto K, Ohnishi T, Hirao K, Yamashita F, Samejima H (2005) Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci Lett 382(3):269–274

    Article  Google Scholar 

  105. Colliot O, Chetelat G, Chupin M, Desgranges B, Magnin B, Benali H, Lehericy S (2008) Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248(1):194–201

    Article  Google Scholar 

  106. Liu S, Cai W, Wen L, Feng DD, Pujol S, Eberl S (2014) Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer’s disease characterization. Comput Med Imaging Graph 38(6):436–444

    Article  Google Scholar 

  107. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  Google Scholar 

  108. Illan IA, Gorriz JM, Lopez MM, Ramírez J, Salas-Gonzalez D, Puntonet CG (2011) Computer-aided diagnosis of Alzheimer’s disease using component-based SVM. Appl Soft Comput 11(2):2376–2382

    Article  Google Scholar 

  109. Tripoliti EE, Fotiadis DI, Argyropoulou M (2011) A supervised method to assist the diagnosis and monitor the progression of Alzheimer’s disease using data from an fMRI experiment. Artif Intell Med 53(1):35–45

    Article  Google Scholar 

  110. Tong T, Wolz R, Gao Q, Guerrero R, Hajnal JV, Rueckert D, Alzheimer’s Disease Neuroimaging Initiative, (2014) Multiple Instance Learning for classification of dementia in brain MRI. Medical Image Analysis 18(5):808-818

  111. Janousova E, Vounou M, Wolz R, Gray KR, Rueckert D, Montana G (2012) Biomarker discovery for sparse classification of brain images in Alzheimer's disease. Annals of the BMVA, 2

  112. Wang WY, Yu JT, Liu Y, Yin RH, Wang HF, Wang J, Tan L (2015) Voxel-based meta-analysis of grey matter changes in Alzheimer’s disease. Trans Neurodegener 4(1):6

    Article  Google Scholar 

  113. Glozman T, Solomon J, Pestilli F, Guibas L (2017) Shape-attributes of brain structures as biomarkers for Alzheimer’s disease. J Alzheimers Dis 56(1):287–295

    Article  Google Scholar 

  114. Tou JY, Tay JYH, Lau PY (2008) One-dimensional grey-level co-occurrence matrices for texture classification. Int Symp Inf Technol, IEEE 3:1–6

    Google Scholar 

  115. Jiji GW, Suji GE, Rangini M (2014) An intelligent technique for detecting Alzheimer’s disease based on brain structural changes and hippocampal shape. Comput Methods Biomech Biomed Eng: Imaging Visualization 2(2):121–128

    Google Scholar 

  116. Xu L, Pearlson G, Calhoun VD (2009) Joint source-based morphometry identifies linked gray and white matter group differences. Neuroimage 44(3):777–789

    Article  Google Scholar 

  117. McKeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6(5–6):368–372

    Article  Google Scholar 

  118. Lee Rodgers J, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  119. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  120. Wolz R, Aljabar P, Hajnal JV, Lotjonen J, Rueckert D (2011) Manifold learning combining imaging with non-imaging information. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 1637–1640

  121. Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A, Lotjonen J, Initiative ADN (2010) Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. Neuroimage 52(1):109–118

    Article  Google Scholar 

  122. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  Google Scholar 

  123. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  Google Scholar 

  124. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97(20):11050–11055

    Article  Google Scholar 

  125. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207

    Article  Google Scholar 

  126. Serra G, Grana C, Manfredi M, Cucchiara R (2015) Gold: Gaussians of local descriptors for image representation. Comput Vis Image Underst 134:22–32

    Article  Google Scholar 

  127. Ojala T, Pietikainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of 12th International Conference on Pattern Recognition 1:582–585

  128. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  129. Arora N, Ashok A, Tiwari S (2019) Similar image retrieval based on texture feature vector using local octal and local hexadecimal pattern and comparison with local binary pattern. J Mech Continua Math Sci 14(4):558–578

    Google Scholar 

  130. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  131. Paci M, Nanni L, Lahti A, Aalto-Setala K, Hyttinen J, Severi S (2013) Non-binary coding for texture descriptors in sub-cellular and stem cell image classification. Curr Bioinform 8(2):208–219

    Article  Google Scholar 

  132. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 1:886–893

  133. Webster MARK, Sheets HD (2010) A practical introduction to landmark-based geometric morphometrics. Paleontol Soc Papers 16:163–188

    Article  Google Scholar 

  134. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  MATH  Google Scholar 

  135. Chang T, Kuo CC (1993) Texture analysis and classification with tree-structured wavelet transform. IEEE Trans Image Process 2(4):429–441

    Article  Google Scholar 

  136. Meyer Y (1992) Wavelets and operators: Volume 1. Cambridge University Press, p 37

  137. Selvan S, Ramakrishnan S (2007) SVD-based modelling for image texture classification using wavelet transformation. IEEE Trans Image Process 16(11):2688–2696

    Article  MathSciNet  Google Scholar 

  138. Zhang Y, Wu L (2011) Crop classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors 11(5):4721–4743

    Article  Google Scholar 

  139. Shukla PD (2003) Complex wavelet transforms and their applications. A Dissertation Submitted of Signal Processing Division, Department of Electronic and Electrical Engineering University of Strathclyde Scotland United Kingdom

  140. Gabor D (1946) Theory of communication. Part 1: The analysis of information. J Inst Electr Eng-Part III: Radio Commun Eng 93(26):429–441

    Google Scholar 

  141. Hahn SL (1996) Hilbert transforms in signal processing. Artech House, Boston, MA

    MATH  Google Scholar 

  142. Kingsbury NG (1998) The dual-tree complex wavelet transforms: a new technique for shift invariance and directional filters. In IEEE Digital Signal Processing Workshop, 86:120–131, Citeseer

  143. Kingsbury N (1998) The dual-tree complex wavelet transforms: a new efficient tool for image restoration and enhancement. In 9th European Signal Processing Conference, 1–4, IEEE

  144. Vermaak H, Nsengiyumva P, Luwes, N (2016) Using the dual-tree complex wavelet transform for improved fabric defect detection. Journal of Sensors

  145. Do MN, Vetterli M (2002) Contourlets: a directional multiresolution image representation. In Proceedings. International Conference on Image Processing, 1: I-I, IEEE

  146. Rao CS, Kumar SS, Chatterji BN (2007) Content-based image retrieval using contourlet transform. ICGST-GVIP Journal 7(3):9–15

    Google Scholar 

  147. Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  148. Bamberger RH, Smith MJ (1992) A filter bank for the directional decomposition of images: Theory and design. IEEE Trans Signal Process 40(4):882–893

    Article  Google Scholar 

  149. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  150. Vetterli M (1984) Multi-dimensional sub-band coding: Some theory and algorithms. Signal Process 6(2):97–112

    Article  MathSciNet  Google Scholar 

  151. Do MN, Vetterli M (2001) Pyramidal directional filter banks and curvelets. In Proceedings 2001 International Conference on Image Processing, 3:158–161, IEEE

  152. Candes EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun Pure Appl Math: A J Issued Courant Inst Math Sci 57(2):219–266

    Article  MATH  Google Scholar 

  153. Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MathSciNet  MATH  Google Scholar 

  154. Gilles J (2013) Empirical Wavelet Transform. IEEE Trans Signal Process 61(16):3999–4010

    Article  MathSciNet  MATH  Google Scholar 

  155. Lim WQ (2010) The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  MATH  Google Scholar 

  156. Easley G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25(1):25–46

    Article  MathSciNet  MATH  Google Scholar 

  157. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  158. Lowe DG (2004) Distinctive image features from scale-invariant key points. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  159. Hammouda K, Jernigan E (2000) Texture segmentation using Gabor filters. Center Intell Mach 2(1):64–71

    Google Scholar 

  160. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  161. Galloway MM, (1975) Texture analysis using gray level run lengths

  162. Zhang H, Hung CL, Min G, Guo JP, Liu M, Hu X (2019) GPU-Accelerated GLRLM algorithm for feature extraction of MRI. Sci Rep 9(1):1–13

    Google Scholar 

  163. Brechbuhler C, Gerig G, Kubler O (1995) Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Underst 61(2):154–170

    Article  Google Scholar 

  164. Singh C, Upneja R (2012) Improving accuracy of pseudo Zernike moments using image interpolation. Int J Comput Appl 4:35–40

    Google Scholar 

  165. Ojala T, Pietikainen M, Maenpaa T (2001) A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. Pattern Recognition, Springer, 399-408

  166. Ajmera PK, Holambe RS (2013) Fractional Fourier transform-based features for speaker recognition using support vector machine. Comput Electr Eng 39(2):550–557

    Article  Google Scholar 

  167. Santhanam B, McClellan JH (1996) The discrete rotational Fourier transform. IEEE Trans Signal Process 44(4):994–998

    Article  Google Scholar 

  168. Peck R, Devore JL (2011) Statistics: The exploration & analysis of data. Cengage Learning

  169. Zhou N, Wang L (2007) A modified T-test feature selection method and its application on the HapMap genotype data. Genomics Proteomics Bioinformatics 5(3–4):242–249

    Article  Google Scholar 

  170. Sengur A (2008) An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases. Comput Biol Med 38(3):329–338

    Article  Google Scholar 

  171. Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 5(3):735–743

  172. Ramírez J, Gorriz JM, Segovia F, Chaves R, Salas-Gonzalez D, Lopez M et al (2010) Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification. Neurosci Lett 472(2):99–103

    Article  Google Scholar 

  173. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning theory, 144–152

  174. Vapnik V (2013) The nature of statistical learning theory. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  175. Mangasarian OL, Wild EW (2005) Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74

    Article  Google Scholar 

  176. Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  Google Scholar 

  177. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175

    Article  MathSciNet  Google Scholar 

  178. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  179. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemometrics: A J Chemometrics Soc 16(3):119–128

    Article  Google Scholar 

  180. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  Google Scholar 

  181. Trygg J, Wold S (2003) O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter. J Chemom 17(1):53–64

    Article  Google Scholar 

  182. Wold S, Trygg J, Berglund A, Antti H (2001) Some recent developments in PLS modelling. Chemom Intell Lab Syst 58(2):131–150

    Article  Google Scholar 

  183. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80(1):115–122

    Article  Google Scholar 

  184. Demiroz G, Guvenir HA (1997) Classification by voting feature intervals. In European Conference on Machine Learning, 85–92

  185. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Florida

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palak Goyal.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, P., Rani, R. & Singh, K. State-of-the-Art Machine Learning Techniques for Diagnosis of Alzheimer’s Disease from MR-Images: A Systematic Review. Arch Computat Methods Eng 29, 2737–2780 (2022). https://doi.org/10.1007/s11831-021-09674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09674-8

Navigation