Skip to main content
Log in

Separation of toluene from a toluene/n-heptane mixture using ethylene glycol containing deep eutectic solvents

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) were synthesized and used to separate toluene from n-heptane. DES3 and DES4 were synthesized using choline chloride, urea, and ethylene glycol with a molar ratio of 1: 2: 1 and methyltriph-enylphosphonium bromide and ethylene glycol with a 1: 3 ratio, respectively. While dynamic viscosity of DES2 ranged from 575.9 to 73.8 over temperatures 293.2 to 323.2 K, respectively, that of DES3 ranged from 219.5 to 39.44 [mPa·s]. The viscosity of both DES3 and DES4 follows the Arrhenius equation with respect to temperature from 293.2 to 323.2 K. The liquid-liquid equilibrium (LLE) of the pseudoternary system of toluene, n-heptane, and DES3 were performed at temperature of 303.2 K at ambient pressure. Another LLE of the pseudoternary system of toluene, n-heptane, and DES4 were was obtained over a temperature range of 298.2–313.2 K with a 10 K interval at atmospheric pressure. The experimental LLE data were correlated using the non-random two-liquid (NRTL) model. DESs were not detected in the raffinate phase, and as a result no further separation process for DES was necessary in the toluene separation process. The values of selectivity in the presence of DES 4 changed in a range from 24.4 to 147.5, however, those in the presence of DES3 from 4.1 to 18.7 at 313.2 K. The values of selectivity of toluene with DES applied in this study were far higher than those with other conventional solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Meindersma, A. Podt and A. B. de Haan, Fuel Process. Technol., 87, 59 (2005).

    Article  Google Scholar 

  2. Y. Wang, Y. Hou, W. Wu, D. Liu, Y. Ji and S. Ren, Green Chem., 18, 3089 (2016).

    Article  CAS  Google Scholar 

  3. M. Larriba, P. Navarro, J. Garcia and F. Rodriguez, Ind. Eng. Chem. Res., 52, 2714 (2013).

    Article  CAS  Google Scholar 

  4. A. P. Abbott, G. Capper, D. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Comm., 70 (2003).

  5. H. I. Jung and Y. Park, Korean J. Chem. Eng., 37, 1212 (2020).

    Article  Google Scholar 

  6. Y. T. Tan, G. C. Ngoh and A. S. M. Chua, Ind. Crop. Prod., 123, 271 (2018).

    Article  CAS  Google Scholar 

  7. N. Sudhir, P. Yadav, B. R. Nautiyal, R. Singh, H. Rastogi, H. Chauhan and H. Sep. Sci. Technol., 55, 554 (2020).

    Article  CAS  Google Scholar 

  8. L. Benvenutti, A. Antonio, F. Zielinski, S. Regina and S. Ferreira, Trends Food Sci. Technol., 90, 133 (2019).

    Article  CAS  Google Scholar 

  9. A. Hosseini, R. Haghbakhsh and S. Raeissi, J. Chem. Eng. Data, 64, 3811 (2019).

    Article  CAS  Google Scholar 

  10. J. Y. Lee and Y. Park, Korean J. Chem. Eng., 35, 210 (2018).

    Article  Google Scholar 

  11. M. A. Kareem, F. S. Mjalli, M. A. Hashim, M. K. O. Hadj-Kali, F. S. G. Bagh and I. M. Alnashef, Fluid Phase Equilib., 333, 47 (2012).

    Article  CAS  Google Scholar 

  12. C. V. Manohar, D. Rabari, A. A. P. Kumar, T. Banerjee and K. Mohanty, Fluid Phase Equilib., 360, 392 (2013).

    Article  CAS  Google Scholar 

  13. S. Sarmad, Y. Xie, J. Mikkola and X. Ji, New J. Chem., 41, 290 (2017).

    Article  CAS  Google Scholar 

  14. Y. Xie, H. Dong, X. Zhang, X. Lu and X. Ji, J. Chem. Eng. Data, 59, 3344 (2014).

    Article  CAS  Google Scholar 

  15. V. A. Dukhande, T. S. Choksi, S. U. Sabnis, W. Patwardhan and A. V. Patwardhan, Fluid Phase Equilib., 342, 75 (2013).

    Article  CAS  Google Scholar 

  16. J. Y. Lee and Y. Park, J. Solution Chem., 48, 920 (2019).

    Article  CAS  Google Scholar 

  17. P. K. Naik, P. Dehury, S. Paul and T. Banerjee, Fluid Phase Equilib., 423, 146 (2016).

    Article  CAS  Google Scholar 

  18. H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2020 R1F1A10488128). This work was supported by 2020 Hongik University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YoonKook Park.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y. Separation of toluene from a toluene/n-heptane mixture using ethylene glycol containing deep eutectic solvents. Korean J. Chem. Eng. 38, 604–609 (2021). https://doi.org/10.1007/s11814-020-0732-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0732-x

Keywords

Navigation