Skip to main content
Log in

Microstructural evolution and mechanical properties of selective laser melted Ti-6Al-4V induced by annealing treatment

退火处理对激光选区激光熔化成形 Ti-6Al-4V 合金的显微组织和力学性能影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ti-6Al-4V specimens were fabricated by selective laser melting (SLM) to study the effect of thermal treatment on the phase transformation, elemental diffusion, microstructure, and mechanical properties. The results show that vanadium enriches around the boundary of α phases with increasing annealing temperature to 973 K, and α′ phases transform into α+β at 973 K. The typical α′ martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K. The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility ((1305±25) MPa and (37±3) %, respectively).

摘要

利用激光选区熔化技术(SLM)制备 Ti-6Al-4V 合金,并研究退火处理对该合金的相转变、元素扩散、显微组织结构以及力学性能的影响。结果表明,随着退火温度的升高,钒元素富集在 α′相并且α′相在973 K 转变为 α+β双相组织。在973 K,α′相所形成的马氏体组织转变为细小等轴显微组织,且该等轴组织随温度的升高发生显著粗化。经过973 K 退火的SLM Ti-6Al-4V 合金表现出良好且均衡的强度和延展性,分别为(1305±25) MPa,(37±3)%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BANERJEE D, WILLIAMS J C. Perspectives on titanium science and technology [J]. Acta Materialia, 2013, 61(3): 844–879.

    Article  Google Scholar 

  2. EHTEMAM HAGHIGHI S, LU H B, JIAN G Y, CAO G H, HABIBI D, ZHANG L C. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti-Fe-Ta alloys [J]. Materials & Design, 2015, 76: 47–54.

    Article  Google Scholar 

  3. GEETHA M, SINGH A K, ASOKAMANI R, GOGIA A K. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review [J]. Progress in Materials Science, 2009, 54(3): 397–425.

    Article  Google Scholar 

  4. DONOGHUE J, ANTONYSAMY A A, MARTINA F, COLEGROVE P A, WILLIAMS S W, PRANGNELL P B. The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V [J]. Materials Characterization, 2016, 114: 103–114.

    Article  Google Scholar 

  5. WANG Shao-gang, WU Xin-qiang. Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding [J]. Materials & Design, 2012, 36: 663–670.

    Article  Google Scholar 

  6. ATTAR H, CALIN M, ZHANG L C, SCUDINO S, ECKERT J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J]. Materials Science and Engineering A, 2014, 593: 170–177.

    Article  Google Scholar 

  7. ATTAR H, BOENISCH M, CALIN M, ZHANG L C, SCUDINO S, ECKERT J. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Materialia, 2014, 76: 13–22.

    Article  Google Scholar 

  8. ZHANG Shuang-yin, LIN Xin, CHEN Jing, HUANG Wei-dong. Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy [J]. Rare Metals, 2009, 28(6): 537–544.

    Article  Google Scholar 

  9. ZHOU Li-bo, YUAN Tie-chui, LI Rui-di, TANG Jian-zhong, WANG Min-bo, MEI Fang-sheng. Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting [J]. Journal of Alloys and Compounds, 2018, 762: 289–300.

    Article  Google Scholar 

  10. WANG Pei, ECKERT J, PRASHANTH K G, WU Ming-wei, KABAN I, XI Li-xia, SCUDINO S. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2001–2034.

    Article  Google Scholar 

  11. YANG Xin, REN Yao-jia, LIU Shi-feng, WANG Qing-juan, SHI Ming-jun. Microstructure and tensile property of SLM 316L stainless steel manufactured with fine and coarse powder mixtures [J]. Journal of Central South University, 2020, 27(2): 334–343.

    Article  Google Scholar 

  12. GU Dong-dong, HAGEDORN Y C, MEINERS Wilhelm, MENG Guang-bin, BATISTA R J S, WISSENBACH K, POPRAWE R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium [J]. Acta Materialia, 2012, 60(9): 3849–3860.

    Article  Google Scholar 

  13. ZHOU Li-bo, YUAN Tie-chui, TANG Jian-zhong, HE Jianjun, LI Rui-di. Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting-A comparison between nearly β titanium, α titanium and α+β titanium [J]. Optics & Laser Technology, 2019, 119: 105625.

    Article  Google Scholar 

  14. LU Sheng-lu, TANG Hui-ping, QIAN M, HONG Quan, ZENG Li-ying, STJOHN D H. A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting [J]. Journal of Central South University, 2015, 22(8): 2857–2863.

    Article  Google Scholar 

  15. WANG Pei, LAO Chang-shi, CHEN Zhang-wei, LIU Ying-kuo, WANG Hao, WENDROCK H, ECKERT J, SCUDINO S. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. Journal of Materials Science & Technology, 2020, 36: 18–26.

    Article  Google Scholar 

  16. PAULY S, WANG Pei, KUEHN U, KOSIBA K. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu [J]. Additive Manufacturing, 2018, 22: 753–757.

    Article  Google Scholar 

  17. LIU Shun-yu, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Materials & Design, 2019, 164: 107552.

    Article  Google Scholar 

  18. SCHWAB H, PALM F, KUEHN U, ECKERT J. Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting [J]. Materials & Design, 2016, 105: 75–80.

    Article  Google Scholar 

  19. MURR L E, QUINONES S A, GAYTAN S M, LOPEZ M I, RODELA A, MARTINEZ E Y, HERNANDEZ D H, MARTINEZ E, MEDINA F, WICKER R B. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(1): 20–32.

    Article  Google Scholar 

  20. THOMPSON M K, MORONI G, VANEKER T, FADEL G, CAMPBELL R I, GIBSON I, BERNARD A, SCHULZ J, GRAF P, AHUJA B, MARTINA F. Design for additive manufacturing: Trends, opportunities, considerations, and constraints [J]. CIRP Annals-Manufacturing Technology, 2016, 65(2): 737–760.

    Article  Google Scholar 

  21. ZHANG Lai-chang, ATTAR H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review [J]. Advanced Engineering Materials, 2016, 18(4): 463–475.

    Article  Google Scholar 

  22. KARIMZADEH F, HEIDARBEIGY M, SAATCHI A. Effect of heat treatment on corrosion behavior of Ti-6Al-4V alloy weldments [J]. Journal of Materials Processing Technology, 2008, 206(1–3): 388–394.

    Article  Google Scholar 

  23. ZHANG A-li, LIU Dong, WU Xin-hua, WANG Hua-ming. Effect of heat treatment on microstructure and mechanical properties of laser deposited Ti60A alloy [J]. Journal of Alloys and Compounds, 2014, 585: 220–228.

    Article  Google Scholar 

  24. VRANCKEN B, THIJS L, KRUTH J P, HUMBEECK J V. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties [J]. Journal of Alloys and Compounds, 2012, 541: 177–185.

    Article  Google Scholar 

  25. WU S Q, LU Y J, GAN Y L, HUANG T T, ZHAO C Q, LIN J J, GUO S, LIN J X. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments [J]. Journal of Alloys and Compounds, 2016, 672: 643–652.

    Article  Google Scholar 

  26. VILARO T, COLIN C, BARTOUT J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190–3199.

    Article  Google Scholar 

  27. ZENG L, BIELER T R. Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti-6Al-4V wire [J]. Materials Science and Engineering A, 2005, 392(1, 2): 403–414.

    Article  Google Scholar 

  28. MCQUILLAN M K. Phase transformations in titanium and its alloys [J]. Metallurgical Reviews, 1963, 8(1): 41–104.

    Article  Google Scholar 

  29. JANDAGHI M R, POURALIAKBAR H, SABOORI A. Effect of second-phase particles evolution and lattice transformations while ultrafine graining and annealing on the corrosion resistance and electrical conductivity of Al-Mn-Si alloy [J]. Materials Research Express, 2019, 6(10): 1065d9.

    Article  Google Scholar 

  30. XU W, BRANDT M, SUN S, ELAMBASSERIL J, LIU Q, LATHAM K, XIA K, QIAN M. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Materialia, 2015, 85: 74–84.

    Article  Google Scholar 

  31. QAZI J I, SENKOV O N, RAHIM J, GENC A, FORES F H. Phase transformations in Ti-6Al-4V-xH alloys [J]. Metallurgical and Materials Transactions A, 2001, 32(10): 2453–2463.

    Article  Google Scholar 

  32. AHMED T, RACK H J. Phase transformations during cooling in α+β titanium alloys [J]. Materials Science and Engineering A, 1998, 243(1): 206–211.

    Article  Google Scholar 

  33. SAFDAR A, WEI L Y, SNIS A, LAI Z. Evaluation of microstructural development in electron beam melted Ti-6Al-4V [J]. Materials Characterization, 2012, 65: 8–15.

    Article  Google Scholar 

  34. PATTERSON A L. The Scherrer Formula for X-ray particle size determination [J]. Physical Review, 1939, 56(10): 978–982.

    Article  Google Scholar 

  35. LOH L E, CHUA C K, YEONG W Y, SONG Jie, MAPAR M, SING S L, LIU Zhong-hong, ZHANG Dan-qing. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061 [J]. International Journal of Heat and Mass Transfer, 2015, 80: 288–300.

    Article  Google Scholar 

  36. PRASHANTH K G, DAMODARAM R, MAITY T, WANG Pei, ECKERT J. Friction welding of selective laser melted Ti6Al4V parts [J]. Materials Science and Engineering A, 2017, 704: 66–71.

    Article  Google Scholar 

  37. LUETJERING G, WILLIAMS J C. Titanium [M]. Berlin: Springer, 2003.

    Book  Google Scholar 

  38. DOBROMYSLOV A V, ELKIN V A. Martensitic transformation and metastable beta-phase in binary titanium alloys with d-metals of 4–6 periods [J]. Scripta Materialia, 2001, 44(6): 905–910.

    Article  Google Scholar 

  39. LIU Z, WELSCH G. Literature survey on diffusivities of oxygen, aluminum, and vanadium in alpha titanium, beta titanium, and in rutile [J]. Metallurgical Transactions A, 1988, 19(4): 1121–1125.

    Article  Google Scholar 

  40. EHTEMAM-HAGHIGHI S, LIU Yu-jing, CAO Guang-hui, ZHANG Lai-chang. Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition [J]. Materials & Design, 2016, 97: 279–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Pei provided the concept and edited the draft of manuscript. The overarching research goals were developed by J. ECKERT, S. SCUDINO, and K. G. PRASHANTH. CHEN Feng-hua and S. PILZ analyzed the calculated results. The initial draft of the manuscript was written by WANG Pei and K.G. PRASHANTH. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Pei Wang  (王沛) or K. G. Prashanth.

Additional information

Conflict of interest

WANG Pei, CHEN Feng-hua, J. ECKERT, S. PILZ, S. SCUDINO, and K. G. PRASHANTH declare that they have no conflict of interest.

Foundation item: Project (2020A1515110869) supported by Guangdong Basic and Applied Basic Research Foundation, China; Project(GJHZ20190822095418365) supported by Shenzhen International Cooperation Research, China; Project(51775351) supported by the National Natural Science Foundation of China; Project(2019011) supported by the NTUT-SZU Joint Research Program, China; Project(2019040) supported by the Natural Science Foundation of SZU, China; Project(ASTRA6-6) supported by the European Regional Development Fund, European Union

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chen, Fh., Eckert, J. et al. Microstructural evolution and mechanical properties of selective laser melted Ti-6Al-4V induced by annealing treatment. J. Cent. South Univ. 28, 1068–1077 (2021). https://doi.org/10.1007/s11771-021-4680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4680-3

Key words

关键词

Navigation