Skip to main content
Log in

Isolation of an acid producing Bacillus sp. EEEL02: Potential for bauxite residue neutralization

耐碱产酸菌筛选及其在赤泥碱性调控中的应用

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Bauxite residue deposit area (BRDA) is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity. Microbially-driven neutralization of bauxite residue, based on the microbial acid producing metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes. The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions. Several alkaliphilic acid producing bacteria were isolated in this study. One strain was selected for its superior growth pattern and acid metabolism (termed EEEL02). Based on the phylogenetic analysis, this strain was identified as Bacillus thuringiensis. The optimized fermentation conditions were as follows: pH 10; NaCl concentration 5%; temperature 25 °C; EEEL02 preferred glucose and peptone as carbon and nitrogen sources, respectively. Based on optimal fermentation conditions, EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test. Acetic acid, propionic acid and CO2 (g) were the major acid metabolites of fermentation, suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism. This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.

摘要

赤泥堆场是一种典型矿业废弃地,盐度高,碱性强,对植物生长十分不利。酸碱中和是降低赤 泥碱性的主要方法,对堆场植被重建具有重要意义。本研究从赤泥堆场中筛选出1 株耐碱产酸细菌 EEEL02,经鉴定,该菌株为苏云金芽孢杆菌,从属于芽孢杆菌门。通过单因素试验确定该菌株最佳 产酸条件:初始pH 为10,盐浓度5%,培养温度25 °C;最优发酵培养基组成为葡萄糖2%,蛋白胨 0.5%。将EEEL02 接种于赤泥中,在最佳培养条件下培养5 d 后,赤泥pH 从10.26 降低至5.62。EEEL02 在发酵过程中主要代谢产物为乙酸、丙酸和二氧化碳。微生物发酵产酸过程能有效降低赤泥碱度,为 赤泥碱性调控提出一种新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–12834. DOI: 10.1007/s11356-016-6478–7.

    Article  Google Scholar 

  2. XUE Sheng-guo, WU Yu, LI Yi-wei, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, YE Yu. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  3. ZHU Feng, XUE Sheng-guo, HARTLEY W, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23(3): 2856–2863. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  4. KONG Xiang-feng, GUO Ying, XUE Sheng-guo, HARTLEY W, WU Chuan, YE Yu, CHENG Qing. Natural evolution of alkaline characteristics in bauxite residue [J]. Journal of Cleaner Production, 2017, 143: 224–230. DOI: 10.1016/j.jclepro.2016.12.125.

    Article  Google Scholar 

  5. KONG Xiang-feng, JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY WILLIAM, WU Chuan, LI Xiao-bin. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  6. ZHU Feng, ZHOU Jia, XUE Sheng-guo, HARTLEY W, WU Chuan, GUO Ying. Aging of bauxite residue in association of regeneration: A comparison of methods to determine aggregate stability & erosion resistance [J]. Ecological Engineering, 2016, 92(3): 47–54. DOI: 10.1016/j.ecoleng. 2016.03.025.

    Article  Google Scholar 

  7. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (Red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132. DOI: 10.1007/s11356-015–4558-8.

    Article  Google Scholar 

  8. GRAFE M, POWER G, KLAUBER C. Bauxite residue issues: III. Alkalinity and associated chemistry [J]. Hydrometallurgy, 2011, 108(1, 2): 60–79. DOI: 10.1016/j.hydromet.2011.02.004.

    Google Scholar 

  9. LI Yi-wei, JIANG Jun, XUE Sheng-guo, MILLAR G, KONG Xiang-feng, LI Xiao-fei, LI Meng, LI Chu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  10. XUE Sheng-guo, LI Meng, JIANG Jun, GRAEME J M, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  11. LI Xiao-fei, YE Yu, XUE Sheng-guo, JIANG Jun, WU Chuan, KONG Xiang-feng, HARTLEY W, LI Yi-wei. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 1248–1255. DOI: 10.1016/S1003-6326(18)64763-6.

    Article  Google Scholar 

  12. ZHU Feng, HOU Jiang, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation and Development, 2017, 28(7): 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  13. WONG J. Use of waste gypsum in the revegetation on red mud deposits: A greenhouse study [J]. Waste Management & Research, 1993, 11(3): 249–256. DOI: 10.1006/wmre. 1993.1024.

    Article  MathSciNet  Google Scholar 

  14. JONES B E H, HAYNES R J, PHILLIPS I R. Influence of amendments on acidification and leaching of Na from bauxite processing sand [J]. Ecological Engineering, 2015, 84: 435–442. DOI: 10.1016/j.ecoleng.2015.09.054.

    Article  Google Scholar 

  15. KONG Xiang-feng, LI Meng, XUE Sheng-guo, HARTLEY W, CHEN Cheng, WU Chuan, LI Xiao-fei, LI Yi-wei. Acid transformation of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Hazardous Materials, 2017, 324(B): 382–390. DOI: 10.1016/j.jhazmat.2016. 10.073.

    Google Scholar 

  16. SANTINI T C, KERR J L, WARREN L A. Microbiallydriven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131–157. DOI: 10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  17. HAMDY M K, WILLIAMS F S. Bacterial amelioration of bauxite residue waste of industrial alumina plants [J]. Journal of Industrial Microbiology & Biotechnology, 2001, 27(4): 228–233. DOI: 10.1038/sj/jim/7000181.

    Article  Google Scholar 

  18. SCHMALENBERGER A, O'SULLIVAN O, GAHAN J, COTTER P D, COURTNEY R. Bacterial communities established in bauxite residues with different restoration histories [J]. Environmental Science & Technology, 2013, 47(13): 7110–7119. DOI: 10.1021/es401124w.

    Article  Google Scholar 

  19. KRISHNA P, REDDY M S, PATNAIK S K. Aspergillus tubingensis reduces the pH of the bauxite residue (Red mud) amended soils [J]. Water, Air, & Soil Pollution, 2005, 167(1–4): 201–209. DOI: 10.1007/s11270-005-0242-9.

    Article  Google Scholar 

  20. BABU A G, REDDY M S. Aspergillus tubingensis improves the growth and native mycorrhizal colonization of bermudagrass in bauxite residue [J]. Bioremediation Journal, 2011, 15(3): 157–164. DOI: 10.1080/10889868.2011. 598486.

    Article  Google Scholar 

  21. GHOMMIDH C, NAVARRO J M, DURAND G. Acetic acid production by immobilized acetobacter cells [J]. Biotechnology Letters, 1981, 3(2): 93–98. DOI: 10.1007/bf00145117.

    Article  Google Scholar 

  22. ROJAN P J, NAMPOOTHIRI K M, NAIR A S, PANDEY A. L (+)-lactic acid production using Lactobacillus casei in solid-state fermentation [J]. Biotechnology Letters, 2005, 27(21): 1685–1688. DOI: 10.1007/s10529-005-2731-8.

    Article  Google Scholar 

  23. SARETHY I P, SAXENA Y, KAPOOR A, SHARMA M, SHARMA S K, GUPTA V, GUPTA S. Alkaliphilic bacteria: Applications in industrial biotechnology [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(7): 769–790. DOI: 10.1007/s10295-011-0968-x.

    Article  Google Scholar 

  24. CALABIA B P, TOKIWA Y, AIBA S. Fermentative production of L:-(+)-lactic acid by an alkaliphilic marine microorganism [J]. Biotechnology Letters, 2011, 33(7): 1429–1433. DOI: 10.1007/s10529-011-0573-0.

    Article  Google Scholar 

  25. ZHILINA T N, KEVBRIN V V, TUROVA T P, LYSENKO A M, KOSTRIKINA N A, ZAVARZIN G A. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region [J]. Microbiology, 2005, 74(5): 642–653. DOI: 10.1007/s11021-005–0103-y.

    Article  Google Scholar 

  26. WU Chun, ZHUANG Li, ZHOU Shun, LI Fang, HE Jian. Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell [J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt4): 882–887. DOI: 10.1099/ijs.0.020909-0.

    Google Scholar 

  27. NOGUEIRA E W, HAYASH E A, ALVES E, LIMA C A D, ADORNO M T, BRUCHA G. Characterization of alkaliphilic bacteria isolated from bauxite residue in the southern region of minas gerais, Brazil [J]. Brazilian Archives of Biology and Technology, 2017, 60. DOI: 10.1590/1678-4324-2017160215.

    Google Scholar 

  28. PAPPA A, SáNCHEZ-PORRO C, LAZOURA P, KALLIMANIS A, PERISYNAKIS A, VENTOSA A, DRAINAS C, KOUKKOU A I. Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(6): 1432–1436. DOI: 10.1099/ijs.0.014233-0.

    Article  Google Scholar 

  29. ARORA A, KRISHNA P, MALIK V, REDDY M S. Alkalistable xylanase production by alkalitolerant Paenibacillus montaniterrae RMV1 isolated from red mud [J]. Journal of Basic Microbiology, 2014, 54(10): 1023–1029. DOI: 10.1002/jobm.201300357.

    Article  Google Scholar 

  30. KRISHNA P, ARORA A, REDDY M S. An alkaliphilic and xylanolytic strain of Actinomycetes Kocuria sp RM1 isolated from extremely alkaline bauxite residue sites [J]. World Journal of Microbiology & Biotechnology, 2008, 24(12): 3079–3085. DOI: 10.1007/s11274-008-9801-8.

    Article  Google Scholar 

  31. SANAHUJA G, BANAKAR R, TWYMAN R M, CAPELL T, CHRISTOU P. Bacillus thuringiensis: A century of research, development and commercial applications [J]. Plant Biotechnology Journal, 2011, 9(3): 283–300. DOI: 10.1111/j.1467-7652.2011.00595.

    Article  Google Scholar 

  32. SANSINENEA E. Bacillus thuringiensis biotechnology [M]. Springer, 2012: 201–214.

    Book  Google Scholar 

  33. MENG Ying, XUE Yan, YU Bo, GAO Cheng, MA Yan. Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20 [J]. Bioresource Technology, 2012, 116(4): 334–339. DOI: 10.1016/j.biortech.2012.03.103.

    Article  Google Scholar 

  34. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, RAJENDRAN M, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  35. KONG Xiang-feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation & Development, 2018, 29(1): 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  36. KANSO S, GREENE A C, PATEL B K. Bacillus subterraneus sp. nov., an iron-and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer [J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(Pt3): 869–874. DOI: 10.1099/ijs.0.01842-0.

    Google Scholar 

  37. TAKAMI H, TAKAKI Y, UCHIYAMA I. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments [J]. Nucleic Acids Research, 2002, 30(18): 3927–3935. DOI: 10.1093/nar/gkf526.

    Article  Google Scholar 

  38. ISHIKAWA M, NAKAJIMA K, ITAMIYA Y, FURUKAWA S, YAMAMOTO Y, YAMASATO K. Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1 [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt6): 2427–2439. DOI: 10.1099/ijs.0.63713-0.

    Google Scholar 

  39. SARKAR P K, HASENACK B, NOUT M J. Diversity and functionality of Bacillus and related genera isolated from spontaneously fermented soybeans (Indian Kinema) and locust beans (African Soumbala) [J]. International Journal of Food Microbiology, 2002, 77(3): 175–186. DOI: 10.1016/s0168-1605(02)00124-1.

    Article  Google Scholar 

  40. KULSHRESHTHA N M, KUMAR A, BISHT G, PASHA S, KUMAR R. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater [J]. The Scientific World Journal, 2012, 2012(4): 345101. DOI: 10.1100/2012/345101.

    Google Scholar 

  41. SANTINI T C, MALCOLM L I, TYSON G W, WARREN L A. pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue [J]. Environmental Science & Technology, 2016, 50(20): 11164–11173. DOI: 10.1021/acs.est.6b01973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-guo Xue  (薛生国).

Additional information

Foundation item: Projects(41877511, 41842020) supported by the National Natural Science Foundation of China; Project(502221703) supported by the Innovative Project of Independent Exploration of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Liao, Jx., Zhu, F. et al. Isolation of an acid producing Bacillus sp. EEEL02: Potential for bauxite residue neutralization. J. Cent. South Univ. 26, 343–352 (2019). https://doi.org/10.1007/s11771-019-4006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4006-x

Key words

关键词

Navigation