Skip to main content
Log in

Underwater image enhancement by using transmission optimization and background light estimation via principal component analysis fusion

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The optical properties of water exacerbate the problems that arise in underwater imaging, including low contrast, color cast, noise, and haze. Pre-processing techniques are required in order to extract relevant information from these images. To solve the above problem, a new underwater image enhancement by using transmission optimization and background light estimation via Principal component analysis (TOBPCA) is proposed. Firstly, the background light of the degraded underwater image is computed using a dark channel prior; secondly, the degraded underwater RGB images are converted to CIELAB color space. Then, the transmission map of the lightness (L) component of CIELAB color space is represented and optimization of the transmission map is performed. Then, the Principal component analysis is used to fuse the background light and optimized transmission map. Finally, color correction is applied to enhance the underwater image. The proposed method is evaluated on the underwater color cast set (UCCS), underwater image quality set (UIQS), and underwater image enhancement benchmark (UIEB) Database based on Patch-based contrast quality index (PCQI), underwater color image quality evaluation (UCIQE), Underwater image quality measure (UIQM), Structural similarity index (SSIM), Peak signal to noise ratio (PSNR), and discrete entropy (DE) parameters. To verify the efficacy of the proposed method, a qualitative and quantitative comparison has been made on the UCCS, UIQS, and UIEB datasets. The result demonstrates that the proposed method outperforms the state-of-the-art method, in terms of PCQI, UCIQE, SSIM, and DE parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The underwater Image enhancement benchmark dataset is available at link: https://li-chongyi.github.io/proj_benchmark.html and the real-world underwater image enhancement dataset is available at link: https://github.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-RUIE-Benchmark.

References

  1. Wang, X.-C., Wilde, S.A., Xu, B., Pang, C.-J.: Origin of arc-like continental basalts: implications for deep—Earth fluid cycling and tectonic discrimination. Lithos 261, 5–45 (2016)

    Article  Google Scholar 

  2. Bryson, M., Johnson-Roberson, M., Pizarro, O., Williams, S.B.: True color correction of autonomous underwater vehicle imagery. J. F. Robot. 33(6), 853–874 (2016)

    Article  Google Scholar 

  3. Chen, X., Yu, J., Wu, Z.: Temporally identity-aware SSD with attentional LSTM. IEEE Trans. Cybern. 50(6), 2674–2686 (2019)

    Article  Google Scholar 

  4. Zhou, J., Yang, T., Zhang, W.: Underwater vision enhancement technologies: a comprehensive review, challenges, and recent trends. Appl. Intell. 53(3), 3594–3621 (2023)

    Article  Google Scholar 

  5. Zhou, J., Pang, L., Zhang, D., Zhang, W.: Underwater image enhancement method via multi-interval subhistogram perspective equalization. IEEE J. Ocean. Eng. (2023)

  6. Zhou, J., Zhang, D., Zhang, W.: Cross-view enhancement network for underwater images. Eng. Appl. Artif. Intell. 121, 105952 (2023)

    Article  Google Scholar 

  7. Liang, Z., Zhang, W., Ruan, R., Zhuang, P., Xie, X., Li, C.: Underwater image quality improvement via color, detail, and contrast restoration. IEEE Trans. Circuits Syst. Video Technol. (2023)

  8. Liang, Z., Zhang, W., Ruan, R., Zhuang, P., Li, C.: GIFM: an image restoration method with generalized image formation model for poor visible conditions. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022)

    Google Scholar 

  9. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 98, 107038 (2020)

    Article  Google Scholar 

  10. Berman, D., Treibitz, T., Avidan, S.: Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 720–734 (2018)

    Article  Google Scholar 

  11. Li, K. et al.: Beyond single reference for training: underwater image enhancement via comparative learning. IEEE Trans. Circuits Syst. Video Technol. (2022)

  12. Lee, J.-H., Heo, M., Kim, K.-R., Kim, C.-S.: Single-image depth estimation based on fourier domain analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 330–339

  13. Yang, Y., Soatto, S.: Fda: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 4085–4095

  14. Mishra, A. K., Choudhry, M. S., Kumar, M.: Underwater image restoration using color correction and empirical mode decomposition. In: 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), 2023, pp. 522–525

  15. Zhang, W., Wang, Y., Li, C.: Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE J. Ocean. Eng. 47(3), 718–735 (2022)

    Article  Google Scholar 

  16. Zhang, W. et al.: Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Trans. Circuits Syst. Video Technol. (2023)

  17. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. image Process. 27(1), 379–393 (2017)

    Article  MathSciNet  Google Scholar 

  18. Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale Retinex. Neurocomputing 245, 1–9 (2017). https://doi.org/10.1016/j.neucom.2017.03.029

    Article  Google Scholar 

  19. Mishra, A. K., Choudhry, M. S., Kumar, M.: Underwater image restoration using white balance and retinex algorithm. In 2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 2022, pp. 1–5

  20. Zhang, W., Jin, S., Zhuang, P., Liang, Z., Li, C.: Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement. IEEE Signal Process. Lett. 30, 229–233 (2023)

    Article  Google Scholar 

  21. Ancuti, C., Ancuti, C. O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In 2012 IEEE conference on computer vision and pattern recognition, 2012, pp. 81–88

  22. Zhang, W., Zhuang, P., Sun, H.-H., Li, G., Kwong, S., Li, C.: Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Trans. Image Process. 31, 3997–4010 (2022)

    Article  Google Scholar 

  23. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Sbert, M.: Color channel compensation (3C): A fundamental pre-processing step for image enhancement. IEEE Trans. Image Process. 29, 2653–2665 (2019)

    Article  Google Scholar 

  24. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2017)

    Google Scholar 

  25. Guo, Y., Li, H., Zhuang, P.: Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 45(3), 862–870 (2019)

    Article  Google Scholar 

  26. Patil, P. W., Thawakar, O., Dudhane, A., Murala, S.: Motion saliency based generative adversarial network for underwater moving object segmentation. In: 2019 IEEE international conference on image processing (ICIP), 2019, pp. 1565–1569

  27. Peng, Y.-T., Cao, K., Cosman, P.C.: Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 27(6), 2856–2868 (2018)

    Article  MathSciNet  Google Scholar 

  28. Song, W., Wang, Y., Huang, D., Liotta, A., Perra, C.: Enhancement of underwater images with statistical model of background light and optimization of transmission map. IEEE Trans. Broadcast. 66(1), 153–169 (2020)

    Article  Google Scholar 

  29. Zhang, W., et al.: CVANet: Cascaded visual attention network for single image super-resolution. Neural Netw. 170, 622–634 (2024)

    Article  Google Scholar 

  30. Chiang, J.Y., Chen, Y.-C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2011)

    Article  MathSciNet  Google Scholar 

  31. Carlevaris-Bianco, N., Mohan, A., Eustice, R. M.: Initial results in underwater single image dehazing. In: Oceans 2010 Mts/IEEE Seattle, 2010, pp. 1–8

  32. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  33. Drews, P., Nascimento, E., Moraes, F., Botelho, S., Campos, M.: Transmission estimation in underwater single images. In: Proceedings of the IEEE international conference on computer vision workshops, 2013, pp. 825–830.

  34. Ding, X., Wang, Y., Zhang, J., Fu, X.: Underwater image dehaze using scene depth estimation with adaptive color correction. In: OCEANS 2017-Aberdeen, 2017, pp. 1–5

  35. Zhuang, P., Wu, J., Porikli, F., Li, C.: Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans. Image Process. 31, 5442–5455 (2022)

    Article  Google Scholar 

  36. Mi, Z., Li, Y., Wang, Y., Fu, X.: Multi-purpose oriented real-world underwater image enhancement (2020)

  37. Parthasarathy, S., Sankaran, P.: An automated multi scale retinex with color restoration for image enhancement. In: 2012 National Conference on Communications (NCC), 2012, pp. 1–5

  38. Krishnapriya, T. S., Kunju, N.: Underwater image processing using hybrid techniques. In: 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), 2019, pp. 1–4

  39. Li, C.Y., Guo, J.C., Cong, R.M., Pang, Y.W., Wang, B.: Underwater image enhancement by Dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016). https://doi.org/10.1109/TIP.2016.2612882

    Article  MathSciNet  Google Scholar 

  40. Hou, G., Pan, Z., Huang, B., Wang, G., Luan, X.: Hue preserving-based approach for underwater colour image enhancement. IET Image Proc. 12(2), 292–298 (2018). https://doi.org/10.1049/iet-ipr.2017.0359

    Article  Google Scholar 

  41. Yuan, J., Cai, Z., Cao, W.: TEBCF: Real-world underwater image texture enhancement model based on blurriness and color fusion. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2021)

    Google Scholar 

  42. Wang, S., Chen, Z., Wang, H.: Multi-weight and multi-granularity fusion of underwater image enhancement. Earth Sci. Inform. 15(3), 1647–1657 (2022)

    Article  Google Scholar 

  43. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)

    Article  Google Scholar 

  44. Liu, R., Fan, X., Zhu, M., Hou, M., Luo, Z.: Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4861–4875 (2020). https://doi.org/10.1109/TCSVT.2019.2963772

    Article  Google Scholar 

  45. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015). https://doi.org/10.1109/LSP.2015.2487369

    Article  Google Scholar 

  46. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015)

    Article  MathSciNet  Google Scholar 

  47. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41(3), 541–551 (2015)

    Article  Google Scholar 

  48. Wang, X., Chen, L.: An effective histogram modification scheme for image contrast enhancement. Signal Process. Image Commun. 58, 187–198 (2017)

    Article  Google Scholar 

  49. Mishra, A.K., Choudhry, M.S., Kumar, M.: Underwater image enhancement using multiscale decomposition and gamma correction. Multimed. Tools Appl. 82(10), 15715–15733 (2023)

    Article  Google Scholar 

  50. Thum, C.: Measurement of the entropy of an image with application to image focusing. Opt. Acta Int. J. Opt. 31(2), 203–211 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding available.

Author information

Authors and Affiliations

Authors

Contributions

Amarendra Kumar Mishra helped in conceptualization, methodology, software, data curation, investigation, writing—original draft preparation. Manjeet Kumar was involved in conceptualization, methodology, investigation, visualization, writing—reviewing and editing, supervision. Mahipal Singh Choudhry contributed to investigation, visualization, writing—reviewing and editing, supervision.

Corresponding author

Correspondence to Manjeet Kumar.

Ethics declarations

Conflict of interest

All authors of this work declare no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Kumar, M. & Choudhry, M.S. Underwater image enhancement by using transmission optimization and background light estimation via principal component analysis fusion. SIViP 18, 3855–3865 (2024). https://doi.org/10.1007/s11760-024-03047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03047-x

Keywords

Navigation