Skip to main content
Log in

Screen content image quality assessment using curvelet transform

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Screen content images (SCIs) are gaining widespread popularity due to the increase in computer processing power. Dissimilar to the natural images (NIs), SCIs are a mixture of texts, computer-generated graphics and natural images. Due to this reason, SCI and NI have different characteristics. Therefore, the quality assessment methods proposed for NIs are not suitable for assessing the quality of SCIs. In this paper, curvelet-based method (CurM-SCI) is proposed. Curvelet transform is used to extract edge features in CurM-SCI due to its superior directionality. CurM-SCI considers edge features from all orientations. However, most of the existing methods only deal with edge features from horizontal and vertical directions only. A new similarity equation which can handle negative values is also proposed to compare the coefficients of curvelet transform. Compared with the existing methods, CurM-SCI showed better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All the data and figures utilized in this paper are publicly available from the published online databases as mentioned in the paper. The results in this manuscript have not been published elsewhere, nor are they under consideration by another journal.

References

  1. Huang, C.Y., Chen, K.T., Chen, D.Y., Hsu, H.J., Hsu, C.H.: GamingAnywhere: the first open source cloud gaming system. ACM Trans. Multimed. Comput. Commun. Appl. 10(1s), 1–25 (2014). https://doi.org/10.1145/2537855

    Article  Google Scholar 

  2. Lu, Y., Li, S., Shen, H.: Virtualized screen: a third element for cloud–mobile convergence. IEEE Multimed. 18(2), 4–11 (2011). https://doi.org/10.1109/MMUL.2011.33

    Article  Google Scholar 

  3. Muelder, C., Zhu, B., Chen, W., Zhang, H., Ma, K.L.: Visual analysis of cloud computing performance using behavioral lines. IEEE Trans. Visual. Comput. Graph. 22(6), 1694–1704 (2016). https://doi.org/10.1109/TVCG.2016.2534558

    Article  Google Scholar 

  4. Gu, K., Wang, S., Ζhai, G., Ma, S., Lin, W.: Screen image quality assessment incorporating structural degradation measurement. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 125-128 (2015). https://doi.org/10.1109/ISCAS.2015.7168586

  5. Wang, Z.: Applications of objective image quality assessment methods [applications corner]. IEEE Signal Process. Mag. 28(6), 137–142 (2011). https://doi.org/10.1109/MSP.2011.942295

    Article  Google Scholar 

  6. Lin, T., Zhang, P., Wang, S., Zhou, K., Chen, X.: Mixed chroma sampling-rate high efficiency video coding for full-chroma screen content. IEEE Trans. Circuits Syst. Video Technol. 23(1), 173–185 (2013). https://doi.org/10.1109/TCSVT.2012.2223871

    Article  Google Scholar 

  7. Ma, J., Plonka, G.: The curvelet transform. IEEE Signal Process. Mag. 27(2), 118–133 (2010). https://doi.org/10.1109/MSP.2009.935453

    Article  Google Scholar 

  8. Gu, K., Qiao, J., Min, X., Yue, G., Lin, W., Thalmann, D.: Evaluating quality of screen content images via structural variation analysis. IEEE Trans. Visual. Comput. Graph. 24(10), 2689–2701 (2018). https://doi.org/10.1109/TVCG.2017.2771284

    Article  Google Scholar 

  9. Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., Zhang, W.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimedia. 18(6), 1098–1110 (2016). https://doi.org/10.1109/TMM.2016.2547343

    Article  Google Scholar 

  10. Fu, Y., Zeng, H., Ma, L., Ni, Z., Zhu, J., Ma, K.: Screen content image quality assessment using multi-scale difference of Gaussian. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2428–2432 (2018). https://doi.org/10.1109/TCSVT.2018.2854176

    Article  Google Scholar 

  11. Yang, Q., Ma, Z., Xu, Y., Yang, L., Zhang, W., Sun, J.: Modeling the screen content image quality via multiscale edge attention similarity. IEEE Trans. Broadcast. 66(2), 310–321 (2020). https://doi.org/10.1109/TBC.2019.2954063

    Article  Google Scholar 

  12. Ni, Z., Ma, L., Zeng, H., Cai, C., Ma, K.: Gradient direction for screen content image quality assessment. IEEE Signal Process. Lett. 23(10), 1394–1398 (2016). https://doi.org/10.1109/LSP.2016.2599294

    Article  Google Scholar 

  13. Ni, Z., Ma, L., Zeng, H., Chen, J., Cai, C., Ma, K.: ESIM: edge similarity for screen content image quality assessment. IEEE Trans. Image Process. 26(10), 4818–4831 (2017). https://doi.org/10.1109/TIP.2017.2718185

    Article  MathSciNet  Google Scholar 

  14. Ni, Z., Zeng, H., Ma, L., Hou, J., Chen, J., Ma, K.: A gabor feature-based quality assessment model for the screen content images. IEEE Trans. Image Process. 27(9), 4516–4528 (2018). https://doi.org/10.1109/TIP.2018.2839890

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang Y., Wang, M.: An efficient quality assessment method for screen content image based on Gabor. In: 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), pp. 201–205 (2020). https://doi.org/10.1109/ICSIP49896.2020.9339420

  16. Donoho, D.L., Duncan, M.R.: Digital curvelet transform: strategy, implementation, and experiments. Wavelet Appl. VII (2000). https://doi.org/10.1117/12.381679

    Article  Google Scholar 

  17. Liu, L., Dong, H., Huang, H., Bovik, A.C.: No-reference image quality assessment in curvelet domain. Signal Process. Image Commun. 29(4), 494–505 (2014). https://doi.org/10.1016/j.image.2014.02.004

    Article  Google Scholar 

  18. Gao, X., Lu, W., Tao, D., Li, X.: Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 18(7), 1409–1423 (2009). https://doi.org/10.1109/TIP.2009.2018014

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Simoncelli: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  20. Loh, W.T., Bong, D.B.L.: An error-based video quality assessment method with temporal information. Multimed. Tools. Appl. 77(23), 30791–30814 (2018). https://doi.org/10.1007/s11042-018-6107-1

    Article  Google Scholar 

  21. Bong, D.B.L., Khoo, B.E.: Blind image blur assessment by using valid reblur range and histogram shape difference. Signal Process. Image Commun. 29(6), 699–710 (2014). https://doi.org/10.1016/j.image.2014.03.003

    Article  Google Scholar 

  22. Bong, D.B.L., Khoo, B.E.: Objective blur assessment based on contraction errors of local contrast maps. Multimed. Tools. Appl. 74(17), 7355–7378 (2014). https://doi.org/10.1007/s11042-014-1983-5

    Article  Google Scholar 

  23. Zhou, W., Yu, L., Zhou, Y., Qiu, W., Xiang, J., Zhai, Z.: Blind screen content image quality measurement based on sparse feature learning. Signal Image Video Process. 13(3), 525–530 (2019). https://doi.org/10.1007/s11760-018-1378-6

    Article  Google Scholar 

  24. Shen, L., Zhang, C., Hou, C.: Saliency-based feature fusion convolutional network for blind image quality assessment. Signal Image Video Process. 16(2), 419–427 (2022). https://doi.org/10.1007/s11760-021-01958-7

    Article  Google Scholar 

  25. Jiang, X., Shen, L., Yu, L., Jiang, M., Feng, G.: No-reference screen content image quality assessment based on multi-region features. Neurocomputing 386, 30–41 (2020). https://doi.org/10.1016/j.neucom.2019.12.027

    Article  Google Scholar 

  26. Jiang, X., Shen, L., Ding, Q., Zheng, L., An, P.: Screen content image quality assessment based on convolutional neural networks. J. Vis. Commun. Image Represent. 67, 1–9 (2020). https://doi.org/10.1016/j.jvcir.2019.102745

    Article  Google Scholar 

  27. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. Signal Image Video Process. 12(2), 355–362 (2018). https://doi.org/10.1007/s11760-017-1166-8

    Article  Google Scholar 

  28. Loh, W.T., Bong, D.B.L.: A generalized quality assessment method for natural and screen content images. IET Image Process. 15(1), 166–179 (2020). https://doi.org/10.1049/ipr2.12016

    Article  Google Scholar 

  29. Fernandes, F.C.A., Van Spaendonck, R. L., Burrus, C. S.: A directional, shift insensitive, low-redundancy, wavelet transform. In: Proceedings 2001 International Conference on Image Processing, pp. 618–621 (2001). https://doi.org/10.1109/ICIP.2001.959121

  30. Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 21(4), 1500–1512 (2012). https://doi.org/10.1109/TIP.2011.2175935

    Article  MathSciNet  MATH  Google Scholar 

  31. Candès, E.J.: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6(2), 197–218 (1999). https://doi.org/10.1006/acha.1998.0248

    Article  MathSciNet  MATH  Google Scholar 

  32. Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999). https://doi.org/10.1098/rsta.1999.0444

    Article  MathSciNet  MATH  Google Scholar 

  33. Candès, E.J., Donoho, D.L.: Curvelets: a surprisingly effective nonadaptive representation for objects with edges. Technical Report No. 1999-28 (1999). https://purl.stanford.edu/hw450gp6206. Accessed 08 Dec 2022

  34. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006). https://doi.org/10.1137/05064182X

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, H., Wu, S., Deng, C., Lin, W.: Scale and orientation invariant text segmentation for born-digital compound images. IEEE Trans. Cybern. 45(3), 519–533 (2015). https://doi.org/10.1109/TCYB.2014.2330657

    Article  Google Scholar 

  36. Hansen, B.C., Essock, E.A.: A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J. Vis. 4(12), 5–5 (2004). https://doi.org/10.1167/4.12.5

    Article  Google Scholar 

  37. Hall, C.F., Hall, E.L.: A nonlinear model for the spatial characteristics of the human visual system. IEEE Trans. Syst. Man Cybern. Syst. 7(3), 161–170 (1977). https://doi.org/10.1109/TSMC.1977.4309680

    Article  MathSciNet  Google Scholar 

  38. Yang, H., Fang, Y., Lin, W.: Perceptual quality assessment of screen content images. IEEE Trans. Image Process. 24(11), 4408–4421 (2015). https://doi.org/10.1109/TCSVT.2019.2951747

    Article  MathSciNet  MATH  Google Scholar 

  39. VQEG: Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II. http://www.its.bldrdoc.gov/vqeg/projects/frtvphase-ii/frtv-phase-ii.aspx. Accessed Sept 2003

  40. Wang, Z., Simoncelli, E.P., Bovik, A. C.: Multiscale structural similarity for image quality assessment. In: 37th Asilomar Conference on Signals, Systems & Computers, pp. 1398–1402 (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  41. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011). https://doi.org/10.1109/TIP.2010.2092435

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  43. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014). https://doi.org/10.1109/TIP.2013.2293423

    Article  MathSciNet  MATH  Google Scholar 

  44. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. on Image Process. (2004). https://doi.org/10.1109/TIP.2005.859378

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding and support from Ministry of Higher Education Malaysia and Universiti Malaysia Sarawak, through the provision of Fundamental Research Grant Scheme: FRGS/1/2020/TK0/UNIMAS/02/14 (UNIMAS reference number: F02/FRGS/2024/2020).

Funding

This work is supported by Ministry of Higher Education Malaysia and Universiti Malaysia Sarawak through the provision of Fundamental Research Grant Scheme: FRGS/1/2020/TK0/UNIMAS/02/14 (UNIMAS reference number: F02/FRGS/2024/2020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by W-TL. All authors read and approved the manuscript.

Corresponding author

Correspondence to David Boon Liang Bong.

Ethics declarations

Conflict of interest

The authors have no conflict of interest that are directly or indirectly related to the work submitted for publication.

Consent for publication

All policies of the journal Signal, Image and Video Processing are agreed, and the authors agree to submit to this journal for publication.

Ethical approval and consent to participate

The principles of ethical and professional conduct have been followed. This research does not involve human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, WT., Bong, D.B.L. Screen content image quality assessment using curvelet transform. SIViP 17, 2025–2033 (2023). https://doi.org/10.1007/s11760-022-02415-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02415-9

Keywords

Navigation