Skip to main content
Log in

Shift-invariant discrete wavelet transform-based sparse fusion of medical images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this work, the idea of using shift-invariant discrete wavelet transform and sparse fusion-based magnetic resonance and computed tomography image fusion technique is presented. Source images from different modalities are split into different scale components along with high-level components using shift-invariant discrete wavelet transform. Approximation components are fused using sparse fusion. Different computed weights are joined to be used with source images to get the required fused image as output. Metrics-based visual and quantitative results clearly indicate the worth of proposed new approach in comparison with other existing fusion strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barra, V., Boire, J.Y.: A general framework for the fusion of anatomical and functional medical images. NeuroImage 13(3), 410–424 (2001)

    Article  Google Scholar 

  2. Polo, A., Cattani, F., Vavassori, A., Origgi, D., Villa, G., Marsiglia, H., Bellomi, M., Tosi, G., De Cobelli, O., Orecchia, R.: MR and CT image fusion for postimplant analysis in permanent prostate seed implants. Int. J. Radiat. Oncol. Biol. Phys. 60(5), 1572–1579 (2004)

    Article  Google Scholar 

  3. Singh, R., Khare, A.: Multiscale medical image fusion in wavelet domain. Sci. World J. 2013, 1–10 (2013). http://doi.org/10.1155/2013/521034

  4. Kavalcova, L., Skaba, R., Kyncl, M., Rouskova, B., Prochazka, A.: The diagnostic value of MRI fistulogram and MRI distal colostogram in patients with anorectal malformations. J. Pediatr. Surg. 48(8), 1806–1809 (2013)

    Article  Google Scholar 

  5. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26(3), 51 (2007)

    Article  Google Scholar 

  6. Langari, B., Vaseghi, S., Prochazka, A., Vaziri, B., Aria, F.T.: Edge-guided image gap interpolation using multi-scale transformation. IEEE Trans. Image Process. 25(9), 4394–4405 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607 (1996)

    Article  Google Scholar 

  8. Xu, Z.: Medical image fusion using multi-level local extrema. Inf. Fusion 19, 38–48 (2014)

    Article  Google Scholar 

  9. Hill, P.R., Canagarajah, C.N., Bull, D.R.: Image fusion using complex wavelets. In: BMVC, pp. 1–10 (2002)

  10. Jameel, A., Ghafoor, A., Riaz, M.M.: Improved guided image fusion for magnetic resonance and computed tomography imaging. Sci. World J. 2014, 1–7 (2014). http://doi.org/10.1155/2014/695752

  11. Naidu, V.P.S.: Discrete cosine transform-based image fusion. Defence Sci. J. 60(1), 48–54 (2010)

    Article  MathSciNet  Google Scholar 

  12. Shah, P., Srikanth, T.V., Merchant, S.N., Desai, U.B.: Multimodal image/video fusion rule using generalized pixel significance based on statistical properties of the neighborhood. Signal Image Video Process. 8(4), 723–738 (2014)

    Article  Google Scholar 

  13. Shen, R., Cheng, I., Basu, A.: Cross-scale coefficient selection for volumetric medical image fusion. IEEE Trans. Biomed. Eng. 60(4), 1069–1079 (2013)

    Article  Google Scholar 

  14. Gambhir, D., Manchanda, M.: Waveatom transform-based multimodal medical image fusion. Signal Image Video Process. 13(2), 321–329 (2019)

    Article  Google Scholar 

  15. Bhatnagar, G., Wu, Q.J., Liu, Z.: Human visual system inspired multi-modal medical image fusion framework. Expert Syst. Appl. 40(5), 1708–1720 (2013)

    Article  Google Scholar 

  16. Yang, Y., Park, D.S., Huang, S., Rao, N.: Medical image fusion via an effective wavelet-based approach. EURASIP J. Adv. Signal Process. 2010, 44 (2010)

    Article  Google Scholar 

  17. Ramlal, S.D., Sachdeva, J., Ahuja, C.K., Khandelwal, N.: Multimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradient. Signal Image Video Process. 12(8), 1479–1487 (2018)

    Article  Google Scholar 

  18. Wang, L., Li, B., Tian, L.F.: Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients. Inf. Fusion 19, 20–28 (2014)

    Article  Google Scholar 

  19. Ch, M.M.I., Riaz, M.M., Iltaf, N., Ghafoor, A., Sadiq, M.A.: Magnetic resonance and computed tomography image fusion using saliency map and cross bilateral filter. Signal Image Video Process. 13, 1157–1164 (2019). http://doi.org/10.1007/s11760-019-01459-8

  20. Yin, M., Liu, X., Liu, Y., Chen, X.: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled Shearlet transform domain. IEEE Trans. Instrum. Meas. 99, 1–16 (2018)

    Google Scholar 

  21. Bavirisetti, D.P., Kollu, V., Gang, X., Dhuli, R.: Fusion of MRI and CT images using guided image filter and image statistics. Int. J. Imaging Syst. Technol. 27(3), 227–237 (2017)

    Article  Google Scholar 

  22. Zhan, K., Xie, Y., Wang, H., Min, Y.: Fast filtering image fusion. J. Electron. Imaging 26(6), 063004 (2017)

    Article  Google Scholar 

  23. Liu, Y., Chen, X., Cheng, J., Peng, H.: A medical image fusion method based on convolutional neural networks. In: 2017 20th International Conference on Information Fusion (Fusion). IEEE, pp. 1–7 (2017)

  24. Vijayarajan, R., Muttan, S.: Discrete wavelet transform based principal component averaging fusion for medical images. AEU Int. J. Electron. Commun. 69(6), 896–902 (2015)

  25. Li, S., Kang, X., Hu, J.: Image fusion with guided filtering. IEEE Trans. Image process. 22(7), 2864–2875 (2013)

    Article  Google Scholar 

  26. Rockinger, O.: Image sequence fusion using a shift-invariant wavelet transform. In: Proceedings of International Conference on Image Processing, Vol. 3, pp. 288–291. IEEE (1997)

  27. Liu, Y., Liu, S., Wang, Z.: A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 1(24), 147–64 (2015)

    Article  Google Scholar 

  28. Mallat, S.G., Zhang, Z.: Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–415 (1993)

    Article  MATH  Google Scholar 

  29. Harvard Image Database. http://www.med.harvard.edu/aanlib. Last Accessed 16 Mar 2021

  30. Yang, C., Zhang, J.Q., Wang, X.R., Liu, X.: A novel similarity based quality metric for image fusion. Inf. Fusion 9(2), 156–160 (2008)

    Article  Google Scholar 

  31. Haghighat, M., Razian, M.A.: Fast-FMI: non-reference image fusion metric. In: 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3. IEEE (2014)

  32. He, C., Liu, Q., Li, H., Wang, H.: Multimodal medical image fusion based on IHS and PCA. Procedia Eng. 1(7), 280–285 (2010)

    Article  Google Scholar 

  33. Liu, Z., Yin, H., Chai, Y., Yang, S.X.: A novel approach for multimodal medical image fusion. Expert Syst. Appl. 41(16), 7425–7435 (2014)

    Article  Google Scholar 

  34. Bhateja, V., Patel, H., Krishn, A., Sahu, A., Lay-Ekuakille, A.: Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens. J. 15(12), 6783–6790 (2015)

    Article  Google Scholar 

  35. Manchanda, M., Sharma, R.: A novel method of multimodal medical image fusion using fuzzy transform. J. Vis. Commun. Image Represent. 1(40), 197–217 (2016)

    Article  Google Scholar 

  36. Nambiar, R., Desai, U., Shetty, V.: Medical image fusion analysis using curvelet transform. In: Proceedings of the International Conference on Advances in Computing, Communication and Information Science (ACCIS-14), Kerala, India, pp. 27–29 (2014)

  37. Srivastava, R., Prakash, O., Khare, A.: Local energy-based multimodal medical image fusion in curvelet domain. IET Comput. Vis. 10(6), 513–527 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghafoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ch, M.M.I., Riaz, M.M., Iltaf, N. et al. Shift-invariant discrete wavelet transform-based sparse fusion of medical images. SIViP 17, 881–889 (2023). https://doi.org/10.1007/s11760-021-01998-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01998-z

Keywords

Navigation