Skip to main content

Advertisement

Log in

Obesity and Insulin Resistance-Related Changes in the Expression of Lipogenic and Lipolytic Genes in Morbidly Obese Subjects

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

The storage capacity of adipose tissue may be an important factor linking obesity, insulin resistance (IR), and associated morbidities. The aim of this study was to analyze the expression of lipogenic and lipolytic genes in adipose tissue and the influence of IR.

Methods

We studied the mRNA expression of peroxisome proliferator-activated receptor-γ (PPARγ) and lipogenic and lipolytic enzymes in the visceral (VAT) and subcutaneous adipose tissue (SAT) from 23 morbidly obese patients (MO; 13 with low IR and ten with high IR) and from 15 healthy, lean controls.

Results

In the VAT and SAT from the MO, we found an increased expression of PPARγ (p = 0.001 and p = 0.022, respectively), acyl-coenzyme A (CoA)/cholesterol acyltransferase (p < 0.001 and p < 0.001), aquaporin 7 (p < 0.001 and p = 0.003), and adipose triglyceride lipase (p < 0.001 and p < 0.001) and a reduced expression of acetyl-coenzyme A carboxylase (p = 0.004 and p < 0.001), independently of the state of IR. The expression of phosphoenolpyruvate carboxykinase and acyl-CoA synthetase, however, was significantly lower in the MO with high IR (p < 0.05). Glycerol kinase (p = 0.010), hormone-sensitive lipase (p < 0.001), and perilipin (p = 0.006) were only significantly increased in VAT. Acyl-CoA synthetase (p = 0.012) and fatty acid binding protein-4 (p = 0.003) were only significantly decreased in SAT. The expression of the genes studied was only greater in the SAT than the VAT in the controls.

Conclusion

Our results show an upregulation of genes facilitating triglyceride/fatty acid cycling and a reduction in the genes involved in de novo synthesis of fatty acids in morbid obesity. The expression of some of the genes studied seems to be related with the state of IR. VAT and SAT differ metabolically and also between controls and MO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wyne KL. Free fatty acids and type 2 diabetes mellitus. Am J Med. 2003;115:29S–36.

    Article  CAS  PubMed  Google Scholar 

  2. Frayn KN. The glucose–fatty acid cycle: a physiological perspective. Biochem Soc Trans. 2003;31:1115–9.

    Article  CAS  PubMed  Google Scholar 

  3. Wang SJ, Cornick C, O'Dowd J, et al. Improved glucose tolerance in acyl CoA:diacylglycerol acyltransferase 1-null mice is dependent on diet. Lipids Health Dis. 2007;6:2.

    Article  PubMed  Google Scholar 

  4. Wang S, Soni KG, Semache M, et al. Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab. 2008;95:117–26.

    Article  CAS  PubMed  Google Scholar 

  5. Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–6.

    Article  CAS  PubMed  Google Scholar 

  6. Sztalryd C, Xu G, Dorward H, et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol. 2003;161:1093–103.

    Article  CAS  PubMed  Google Scholar 

  7. Kalderon B, Mayorek N, Berry E, et al. Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab. 2000;279:E221–7.

    CAS  PubMed  Google Scholar 

  8. Arner P. Control of lipolysis and its relevance to development of obesity in man. Diab Metab Rev. 1988;4:507–15.

    Article  CAS  Google Scholar 

  9. Picard F, Auwerx J. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr. 2002;22:167–97.

    Article  CAS  PubMed  Google Scholar 

  10. Semple RK, Chatterjee VK, O'Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest. 2006;116:581–9.

    Article  CAS  PubMed  Google Scholar 

  11. Festuccia WT, Laplante M, Berthiaume M, et al. PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia. 2006;49:2427–36.

    Article  CAS  PubMed  Google Scholar 

  12. Zieleniak A, Wójcik M, Woźniak LA. Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma. Arch Immunol Ther Exp (Warsz). 2008;56:331–45.

    Article  CAS  Google Scholar 

  13. García-Fuentes E, García-Almeida JM, García-Arnés J, et al. Morbidly obese individuals with impaired fasting glucose have a specific pattern of insulin secretion and sensitivity: effect of weight loss after bariatric surgery. Obes Surg. 2006;16:1179–88.

    Article  PubMed  Google Scholar 

  14. Soriguer F, García-Serrano S, García-Almeida JM, et al. Changes in the serum composition of free-fatty acids during an intravenous glucose tolerance test. Obesity (Silver Spring). 2009;17:10–5.

    Article  CAS  Google Scholar 

  15. Garrido-Sánchez L, García-Almeida JM, García-Serrano S, et al. Improved carbohydrate metabolism after bariatric surgery raises antioxidized LDL antibody levels in morbidly obese patients. Diab Care. 2008;31:2258–64.

    Article  Google Scholar 

  16. Kintscher U, Law RE. PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab. 2005;288:E287–91.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Fuentes E, Murri M, Garrido-Sanchez L, et al. PPARγ expression after a high-fat meal is associated with plasma superoxide dismutase activity in morbidly obese persons. Obesity (Silver Spring). 2010;18:952–8.

    Article  CAS  Google Scholar 

  18. Macias-Gonzalez M, Moreno-Santos M, Garcia-Almeida JM, et al. PPARγ2 protects against obesity by means of a mechanism that mediates insulin resistance. Eur J Clin Invest. 2009;39:972–9.

    Article  CAS  PubMed  Google Scholar 

  19. Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 2007;3:e64.

    Article  PubMed  Google Scholar 

  20. Chen HC, Stone SJ, Zhou P, et al. Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a:diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes. 2002;51:3189–95.

    Article  CAS  PubMed  Google Scholar 

  21. Yen CL, Stone SJ, Koliwad S, et al. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49:2283–301.

    Article  CAS  PubMed  Google Scholar 

  22. Zang Y, Wang T, Xie W, et al. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes Res. 2005;13:1530–9.

    Article  CAS  PubMed  Google Scholar 

  23. Brownsey RW, Boone AN, Elliott JE, et al. Regulation of acetyl-CoA carboxylase. Biochem Soc Trans. 2006;34:223–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ortega FJ, Mayas D, Moreno-Navarrete JM, et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity (Silver Spring). 2010;18:13–20.

    Article  CAS  Google Scholar 

  25. Kishida K, Kuriyama H, Funahashi T, et al. Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem. 2000;275:20896–902.

    Article  CAS  PubMed  Google Scholar 

  26. Catalán V, Gómez-Ambrosi J, Pastor C, et al. Influence of morbid obesity and insulin resistance on gene expression levels of AQP7 in visceral adipose tissue and AQP9 in liver. Obes Surg. 2008;18:695–701.

    Article  PubMed  Google Scholar 

  27. Ceperuelo-Mallafré V, Miranda M, Chacón MR, et al. Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes. J Clin Endocrinol Metab. 2007;92:3640–5.

    Article  PubMed  Google Scholar 

  28. Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab. 2005;19:471–82.

    Article  CAS  PubMed  Google Scholar 

  29. Mairal A, Langin D, Arner P, et al. Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity. Diabetologia. 2006;49:1629–36.

    Article  CAS  PubMed  Google Scholar 

  30. Tang Y, Osawa H, Onuma H, et al. Improvement in insulin resistance and the restoration of reduced phosphodiesterase 3B gene expression by pioglitazone in adipose tissue of obese diabetic KKAy mice. Diabetes. 1999;48:1830–5.

    Article  CAS  PubMed  Google Scholar 

  31. Flechtner-Mors M, Jenkinson CP, Alt A, et al. Studies of phosphodiesterase effects on adipose tissue metabolism in obese subjects by the microdialysis technique. J Physiol Pharmacol. 2005;56:355–68.

    CAS  PubMed  Google Scholar 

  32. Tordjman J, Chauvet G, Quette J, et al. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem. 2003;278:18785–90.

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki K, Cripe TP, Koch SR, et al. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. J Biol Chem. 1984;259:15242–51.

    CAS  PubMed  Google Scholar 

  34. Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48:1253–62.

    Article  CAS  PubMed  Google Scholar 

  35. Misra A, Vikram NK. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition. 2003;19:457–66.

    Article  PubMed  Google Scholar 

  36. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2009;11:11–8.

    Article  PubMed  Google Scholar 

  37. Larsen TM, Toubro S, Astrup A. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord. 2003;27:147–61.

    Article  CAS  PubMed  Google Scholar 

  38. Large V, Arner P. Regulation of lipolysis in humans. Pathophysiological modulation in obesity, diabetes, and hyperlipidaemia. Diab Metab. 1998;24:409–18.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Ian Johnstone for help with the English language version of the text. We thank Juan Alcaide for the technical assistance. This work was supported in part by grants from the Instituto de Salud Carlos III (CP04/00133, CP04/0039, PS09/01060, PS09/00997), Programa Juan de la Cierva (JCI-2009-04086), and Servicio Andaluz de Salud (PI 0255/2007 and 0438/2006). CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) are ISCIII projects.

Conflict of interest disclosure

None of the authors has anything to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Garrido-Sanchez.

Additional information

García-Fuentes E and Garrido-Sanchez L contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinahones, F.J., Garrido-Sanchez, L., Miranda, M. et al. Obesity and Insulin Resistance-Related Changes in the Expression of Lipogenic and Lipolytic Genes in Morbidly Obese Subjects. OBES SURG 20, 1559–1567 (2010). https://doi.org/10.1007/s11695-010-0194-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0194-z

Keywords

Navigation