Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a new refractory high-entropy alloy, the Co-Cr-Mo-Nb-Ti system, was proposed as a family of candidate materials for high-temperature structural applications. CoCrMoNbTi x (x values in terms of molar ratios, x = 0, 0.2, 0.4, 0.5 and 1.0) alloys were prepared by vacuum arc melting. The effects of variations in the Ti content on the phase constituents, microstructure and mechanical properties of the alloys were investigated using x-ray diffractometry, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy and compressive testing. The results showed that the CoCrMoNbTi0.4 alloy possessed a typical cast dendritic microstructure consisting of a single body-centered cubic (BCC) solid solution. Laves phases (Cr2Nb and Co2Ti) were formed in other alloys with different Ti contents. The results were discussed in terms of the mixing enthalpy, atomic size difference, electronegativity difference and valance electron concentrations among the elements within alloys. The alloy hardness exhibited a slightly decreasing trend as the Ti content increased, resulting from the coarser microstructure and reduced amount of Laves phases. Augmented Ti content increased the compressive strength, but decreased the ductility. Particularly, for the CoCrMoNbTi0.2 alloy, the hardness, compressive strength and fracture strain were as high as 916.46 HV0.5, 1906 MPa and 5.07%, respectively. The solid solution strengthening of the BCC matrix and the formation of hard Laves phases were two main factors contributing to alloy strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303

    Article  Google Scholar 

  2. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy, J. Alloy. Compd., 2010, 502, p 295–299

    Article  Google Scholar 

  3. X.C. Li, D. Dou, Z.Y. Zheng, and J.C. Li, Microstructure and Properties of FeAlCrNiMox High-Entropy Alloys, J. Mater. Eng. Perform., 2016, 25, p 2164–2169

    Article  Google Scholar 

  4. Bingfeng Wang, Fu Ao, Xiaoxia Huang, Bin Liu, Yong Liu, Zezhou Li, and Xiang Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression, J. Mater. Eng. Perform., 2016, 25, p 2985–2992

    Article  Google Scholar 

  5. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Synthesis and Properties of Multiprincipal Component AlCoCrFeNiSix Alloys, Mater. Sci. Eng. A, 2010, 527, p 7210–7214

    Article  Google Scholar 

  6. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb Additions on the Microstructure and Mechanical Property of CoCrFeNi High-Entropy Alloys, Intermetallics, 2015, 60, p 1–8

    Article  Google Scholar 

  7. C. Zhang, G.F. Wu, and P.Q. Dai, Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy, J. Mater. Eng. Perform., 2015, 24, p 1918–1925

    Article  Google Scholar 

  8. Y. Dong, L. Yiping, J. Kong, J. Zhang, and T. Li, Microstructure and Mechanical Properties of Multi-component AlCrFeNiMox High-Entropy Alloys, J. Alloy. Compd., 2013, 573, p 96–101

    Article  Google Scholar 

  9. M. Chuang, M. Tsai, W. Wang, S. Lin, and J. Yeh, Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta Mater., 2011, 59, p 6308–6317

    Article  Google Scholar 

  10. J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform., 2015, 24, p 3685–3698

    Article  Google Scholar 

  11. X. Qiu, Y. Zhang, L. He, and C. Liu, Microstructure and Corrosion Resistance of AlCrFeCuCo High Entropy Alloy, J. Alloy. Compd., 2013, 549, p 195–199

    Article  Google Scholar 

  12. Y. Chang and A. Yeh, The Evolution of Microstructures and High Temperature Properties of AlxCo1.5CrFeNi1.5Tiy High Entropy Alloys, J. Alloy. Compd., 2015, 653, p 379–385

    Article  Google Scholar 

  13. A. Li, D. Ma, and Q. Zheng, Effect of Cr on Microstructure and Properties of a Series of AlTiCrxFeCoNiCu High-Entropy Alloys, J. Mater. Eng. Perform., 2014, 23, p 1197–1203

    Article  Google Scholar 

  14. C. Sajith Babu, K. Sivaprasad, V. Muthupandi, and J.A. Szpunar, Characterization of Nanocrystalline AlCoCrNiFeZn high entropy alloy produced by mechanical alloying, Proc. Mater. Sci., 2014, 5, p 1020–1026

    Article  Google Scholar 

  15. B. Zhang, M.C. Gao, Y. Zhang, S. Yang, and S.M. Guo, Senary refractory high entropy alloy MoNbTaTiVW, Mater. Sci. Technol., 2015, 31, p 1207–1213

    Article  Google Scholar 

  16. H. Jiang, L. Jiang, K. Han, L. Yiping, T. Wang, Z. Cao, and T. Li, Effects of Tungsten on Microstructure and Mechanical Properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx High-Entropy Alloys, J. Mater. Eng. Perform., 2015, 24, p 4594–4600

    Article  Google Scholar 

  17. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and Mechanical Properties of Refractory High Entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 In-Situ Compound, J. Alloy. Compd., 2016, 660, p 197–203

    Article  Google Scholar 

  18. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706

    Article  Google Scholar 

  19. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765

    Article  Google Scholar 

  20. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy, J. Alloy. Compd., 2011, 509, p 6043–6048

    Article  Google Scholar 

  21. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy, J. Mater. Sci., 2012, 47, p 4062–4074

    Article  Google Scholar 

  22. O.N. Senkov and C.F. Woodward, Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5TiZr Alloy, Mater. Sci. Eng., A, 2011, 529, p 311–320

    Article  Google Scholar 

  23. C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, and J.-W. Yeh, Solution Strengthening of Ductile Refractory HfMoxNbTaTiZr High-Entropy Alloys, Mater. Lett., 2016, 175, p 284–287

    Article  Google Scholar 

  24. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and Mechanical Properties of Refractory MoNbHfZrTi High-Entropy Alloy, Mater. Des., 2015, 81, p 87–94

    Article  Google Scholar 

  25. O.N. Senkov, C. Woodward, and D.B. Miracle, Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys, JOM, 2014, 66, p 2030–2042

    Article  Google Scholar 

  26. X. Yang, Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Proc. Eng., 2012, 36, p 292–298

    Article  Google Scholar 

  27. C.-M. Lin, C.-C. Juan, C.-H. Chang, C.-W. Tsai, and J.-W. Yeh, Effect of Al Addition on Mechanical Properties and Microstructure of Refractory AlxHfNbTaTiZr Alloys, J. Alloy. Compd., 2015, 624, p 100–107

    Article  Google Scholar 

  28. International Tables for X-ray Crystallography, Birmingham, England; 1968

  29. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Pearson, Upper Saddle River, 2001

    Google Scholar 

  30. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132, p 233–238

    Article  Google Scholar 

  31. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829

    Article  Google Scholar 

  32. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater., 2011, 21, p 433–436

    Article  Google Scholar 

  33. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and Mechanical Properties of In-Situ MC-Carbide Particulates-Reinforced Refractory High-Entropy Mo0.5NbHf0.5ZrTi Matrix Alloy Composite, Intermetallics, 2016, 69, p 74–77

    Article  Google Scholar 

  34. Y. Zhang, Y. Liu, Y.X. Li, X. Chen, and H.W. Zhang, Microstructure and Mechanical Properties of a Refractory HfNbTiVSi0.5 High-Entropy Alloy Composite, Mater. Lett., 2016, 174, p 82–85

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 51271034) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-BR-16-023A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhou, X. & Li, J. Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy. J. of Materi Eng and Perform 26, 3657–3665 (2017). https://doi.org/10.1007/s11665-017-2799-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2799-z

Keywords

Navigation