Skip to main content
Log in

Portable Membrane-Less Soil Microbial Fuel Cell: Using Multiwalled CNT Paper Electrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Soil microbial fuel cells (SMFCs) are attractive for low-cost bioelectricity generation. In this study, a multiwalled carbon nanotube paper (MCNTP) was fabricated by a simple method for use as the anode and cathode electrodes in a stab-type membrane-less SMFC (SSMFC). Activated carbon powder, carbon fibers, and cellulose fibers were bound by multiwalled carbon nanotube paint to form the MCNTP. As a result, the MCNTP exhibited high conductivity, flexibility, and durability. In addition, the SSMFC was designed as a module mounted with three anodes in series and a floating air cathode. The SSMFC could be activated on demand by simply stabbing in the wet soil. Experimental results showed that the floating cathode outperformed the non-floating one. The SSMFC generated the output shortly after being plugged into the wet soil. The maximum power density was at the level of 60–70 mW/m2 for three separate experiment cycles. Additionally, a single SSMFC was used to power a clock as an example to demonstrate its practical use.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Zafar, S. Ishaq, N. Peleato, and D. Roberts, Meta-Analysis of Operational Performance and Response Metrics of Microbial Fuel Cells (MFCs) Fed with Complex Food Waste. J. Environ. Manag. 315, 115152 (2022).

    Article  CAS  Google Scholar 

  2. M. Sherafatmand and H.Y. Ng, Using Sediment Microbial Fuel Cells (SMFCs) for Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs). Biores. Technol. 195, 122 (2015).

    Article  CAS  Google Scholar 

  3. N. Zhao, Y. Jiang, M. Alvarado-Morales, L. Treu, I. Angelidaki, and Y. Zhang, Electricity Generation and Microbial Communities in Microbial Fuel Cell Powered by Macroalgal Biomass. Bioelectrochemistry 123, 145 (2018).

    Article  CAS  Google Scholar 

  4. Y. Wang, Q. Wen, Y. Chen, J. Yin, and T. Duan, Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation. Appl. Biochem. Biotechnol. 180, 1372 (2016).

    Article  CAS  Google Scholar 

  5. J. Zhang, X. Cao, H. Wang, X. Long, and X. Li, Simultaneous Enhancement of Heavy Metal Removal and Electricity Generation in Soil Microbial Fuel Cell. Ecotoxicol. Environ. Saf. 192, 110314 (2020).

    Article  CAS  Google Scholar 

  6. D. Yu, L. Bai, J. Zhai, Y. Wang, and S. Dong, Toxicity Detection in Water Containing Heavy Metal Ions with a Self-Powered Microbial Fuel Cell-Based Biosensor. Talanta 168, 210 (2017).

    Article  CAS  Google Scholar 

  7. G. Mohanakrishna, R.I. Al-Raoush, I.M. Abu-Reesh, and D. Pant, A Microbial Fuel Cell Configured for the Remediation of Recalcitrant Pollutants in Soil Environment. RSC Adv. 9, 41409 (2019).

    Article  CAS  Google Scholar 

  8. X. Li, X. Wang, Q. Zhao, L. Wan, Y. Li, and Q. Zhou, Carbon Fiber Enhanced Bioelectricity Generation in Soil Microbial Fuel Cells. Biosens. Bioelectron. 85, 135 (2016).

    Article  CAS  Google Scholar 

  9. X. Wang, Z. Cai, Q. Zhou, Z. Zhang, and C. Chen, Bioelectrochemical Stimulation of Petroleum Hydrocarbon Degradation In Saline Soil Using U-tube Microbial Fuel Cells. Biotechnol. Bioeng. 109, 426 (2012).

    Article  CAS  Google Scholar 

  10. K. Yu, H.Q. Xiong, L. Wen, Y.L. Dai, S.H. Yang, S.F. Fan, F. Teng, and X.Y. Qiao, Discharge Behavior and Electrochemical Properties of Mg-Al-Sn Alloy Anode for Seawater Activated Battery. Trans. Nonferrous Met. Soc. China 25, 1234 (2015).

    Article  CAS  Google Scholar 

  11. X. Li, X. Wang, Y. Zhang, L. Cheng, J. Liu, F. Li, B. Gao, and Q. Zhou, Extended Petroleum Hydrocarbon Bioremediation in Saline Soil Using Pt-Free Multianodes Microbial Fuel Cells. RSC Adv. 4, 59803 (2014).

    Article  CAS  Google Scholar 

  12. L. Lu, H. Yazdi, S. Jin, Y. Zuo, P.H. Fallgren, and Z.J. Ren, Enhanced Bioremediation of Hydrocarbon-Contaminated Soil Using Pilot-Scale Bioelectrochemical Systems. J. Hazard. Mater. 274, 8 (2014).

    Article  CAS  Google Scholar 

  13. Y. Wang, Y. Chen, Q. Wen, H. Zheng, H. Xu, and L. Qi, Electricity Generation, Energy Storage, and Microbial-Community Analysis in Microbial Fuel Cells with Multilayer Capacitive Anodes. Energy 189, 116342 (2019).

    Article  CAS  Google Scholar 

  14. M. Ghasemi, W.R. Wan Daud, S.H.A. Hassan, T. Jafary, M. Rahimnejad, A. Ahmad, and M.H. Yazdi, Carbon Nanotube/Polypyrrole Nanocomposite as a Novel Cathode Catalyst and Proper Alternative for Pt in Microbial Fuel Cell. Int. J. Hydrog. Energy 41, 4872 (2016).

    Article  CAS  Google Scholar 

  15. C. Santoro, M. Kodali, S. Kabir, F. Soavi, A. Serov, and P. Atanassov, Three-Dimensional Graphene Nanosheets as Cathode Catalysts in Standard and Supercapacitive Microbial Fuel Cell. J. Power Sources 356, 371 (2017).

    Article  CAS  Google Scholar 

  16. C. Lv, B. Liang, M. Zhong, K. Li, and Y. Qi, Activated Carbon-Supported Multi-Doped Graphene as High-Efficient Catalyst to Modify Air Cathode in Microbial Fuel Cells. Electrochim. Acta 304, 360 (2019).

    Article  CAS  Google Scholar 

  17. I. Gajda, J. Greenman, and I. Ieropoulos, Microbial Fuel Cell stack Performance Enhancement Through Carbon Veil Anode Modification with Activated Carbon Powder. Appl. Energy 262, 114475 (2020).

    Article  CAS  Google Scholar 

  18. D. Nguyen and K. Taguchi, Optimization of Electrodes in a Disposable Paper-Based Microbial Fuel Cell. IEEJ Trans. Electr. Electron. Eng. 15, 311 (2020).

    Article  CAS  Google Scholar 

  19. D.T. Nguyen and K. Taguchi, Comparative Study of ZnCl2 -Activated and Steam-Activated Carbons used in the Anode of Microbial Fuel Cells. IEEJ Trans. Electr. Electron. Eng. 15, 313 (2020).

    Article  CAS  Google Scholar 

  20. H.-U.-D. Nguyen, D.-T. Nguyen, and K. Taguchi, A Portable Soil Microbial Fuel Cell for Sensing Soil Water Content. Meas. Sens. 18, 100231 (2021).

    Article  Google Scholar 

  21. H.-U.-D. Nguyen, D.-T. Nguyen, and K. Taguchi, A Compact, Membrane-Less, Easy-To-Use Soil Microbial Fuel Cell: Generating Electricity from Household Rice Washing Wastewater. Biochem. Eng. J. 179, 108338 (2022).

    Article  CAS  Google Scholar 

  22. Y. Bin Jiang, W.H. Zhong, C. Han, and H. Deng, Characterization of electricity generated by soil in microbial fuel cells and the isolation of soil source exoelectrogenic bacteria. Front Microbiol 7, 1776 (2016).

    Google Scholar 

  23. L. Hsu, A. Mohamed, P.T. Ha, J. Bloom, T. Ewing, M. Arias-Thode, B. Chadwick, and H. Beyenal, The Influence of Energy Harvesting Strategies on Performance and Microbial Community for Sediment Microbial Fuel Cells. J. Electrochem. Soc. 164, H3109 (2017).

    Article  CAS  Google Scholar 

  24. G. Palanisamy, H.Y. Jung, T. Sadhasivam, M.D. Kurkuri, S.C. Kim, and S.H. Roh, A Comprehensive Review on Microbial Fuel Cell Technologies: Processes, Utilization, and Advanced Developments in Electrodes and Membranes. J. Clean. Prod. 221, 598 (2019).

    Article  CAS  Google Scholar 

  25. D.-T. Nguyen and K. Taguchi, A Floating Microbial Fuel Cell: Generating Electricity from Japanese Rice Washing Wastewater. Energy Rep. 6, 758 (2020).

    Article  Google Scholar 

  26. A. Fraiwan, L. Kwan, and S. Choi, A Disposable Power Source in Resource-Limited Environments: A Paper-Based Biobattery Generating Electricity from Wastewater. Biosens. Bioelectron. 85, 190 (2016).

    Article  CAS  Google Scholar 

  27. D.T. Nguyen and K. Taguchi, Enhancing the Performance of E. coli-Powered MFCs by Using Porous 3D Anodes Based on Coconut Activated Carbon. Biochem. Eng. J. 151, 107357 (2019).

    Article  CAS  Google Scholar 

  28. K.S. Araki, I.Y. Perwira, D. Adhikari, and M. Kubo, Comparison of Soil Properties Between Upland and Paddy Fields Based on the Soil Fertility Index (SOFIX). Curr. Trends Microbiol. 10, 85 (2016).

    Google Scholar 

  29. Y.-B. Jiang, W.-H. Zhong, C. Han, and H. Deng, Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria. Front. Microbiol. 7, 1776 (2016).

    Google Scholar 

  30. H. Hadiyanto, M. Christwardana, W.Z. Pratiwi, P. Purwanto, S. Sudarno, K. Haryani, and A.T. Hoang, Response Surface Optimization of Microalgae Microbial Fuel Cell (MMFC) Enhanced by Yeast Immobilization for Bioelectricity Production. Chemosphere 287, 132275 (2022).

    Article  CAS  Google Scholar 

  31. A. Schievano, A. Colombo, M. Grattieri, S.P. Trasatti, A. Liberale, P. Tremolada, C. Pino, and P. Cristiani, Floating Microbial Fuel Cells as Energy Harvesters for Signal Transmission from Natural Water Bodies. J. Power Sources 340, 80 (2017).

    Article  CAS  Google Scholar 

  32. H.-U.-D. Nguyen, D.-T. Nguyen, and K. Taguchi, A Novel Design Portable Plugged-Type Soil Microbial Fuel Cell for Bioelectricity Generation. Energies (Basel) 14, 553 (2021).

    Article  CAS  Google Scholar 

  33. X. Li, X. Wang, Z.J. Ren, Y. Zhang, N. Li, and Q. Zhou, Sand Amendment Enhances Bioelectrochemical Remediation of Petroleum Hydrocarbon Contaminated Soil. Chemosphere 141, 62 (2015).

    Article  CAS  Google Scholar 

  34. W. Gustave, Z.F. Yuan, R. Sekar, V. Toppin, J.Y. Liu, Y.X. Ren, J. Zhang, and Z. Chen, Relic DNA does not Obscure the Microbial Community of Paddy Soil Microbial Fuel Cells. Res. Microbiol. 170, 97 (2019).

    Article  CAS  Google Scholar 

  35. L. Pu, K. Li, Z. Chen, P. Zhang, X. Zhang, and Z. Fu, Silver Electrodeposition on the Activated Carbon Air Cathode for Performance Improvement in Microbial Fuel Cells. J. Power Sources 268, 476 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Tran Quoc Thinh, Bioengineering Laboratory, Ritsumeikan University, for his assistance in soil characterization and management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Taguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, DT., Nguyen, HUD. & Taguchi, K. Portable Membrane-Less Soil Microbial Fuel Cell: Using Multiwalled CNT Paper Electrodes. J. Electron. Mater. 51, 5946–5955 (2022). https://doi.org/10.1007/s11664-022-09806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09806-1

Keywords

Navigation