Skip to main content
Log in

Polydimethylsiloxane-Multiwalled Carbon Nanotube Nanocomposites as Dielectric Materials: Frequency, Concentration, and Temperature-Dependence Studies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane/multiwalled carbon nanotube (PDMS/MWCNT) nanocomposites with different amounts of MWCNT nano-filler (1 wt.%, 2 wt.%, 4 wt.%, 5 wt.%, 6 wt.%) were prepared by mechanical mixing using a Brabender and two roll mixer. The surface and bulk properties, and dispersion of the nanofillers in the nanocomposite matrix were studied using scanning and transmission electron microscopy (SEM and TEM); the average diameter of the MWCNTs in the PDMS matrix was ∼ 25 nm. Variable-temperature complex impedance analysis (CIA) showed that the impedance decreased with the frequency, MWCNT concentration, and temperature from 108 Ω to 105 Ω, demonstrating the possibility of increasing the electrical conductivity of the nanocomposites. The dielectric permittivity (\(\varepsilon^{{\prime }}\)) decreased with frequency from 800 to 52 (6% MWCNT), and increased from 52 to 430 (at 1 Hz) with MWCNT doping and from 430 to 1870 (at 1 Hz) with temperature, attributed to interaction of the nanofillers inside the PDMS matrix and the positive temperature coefficient (PTC) effect. Electrical conductivity was observed in both the direct current (DC) and alternating current (AC) region, and increased from 10−4 S cm−1 to 10−2 S cm−1 with frequency (6% MWCNT) and from 10−7 S cm−1 to 10−4 S cm−1 with the MWCNT concentration due to the hopping or tunneling mechanism. The PTC increased with temperature given the conductive nature of the filler and positive temperature coefficient effect. Percolation studies of the dielectric permittivity and electrical conductivity as a function of frequency at different temperatures (30°C, 50°C, 70°C, 100°C) showed that the threshold limit of the MWCNTs in the PDMS matrix was 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.X. Liu and J.W. Choy, Nanomaterial 2, 329 (2012).

    Article  Google Scholar 

  2. Z.M. Dang, J.K. Yuan, S.H. Yao, and R.J. Liao, Adv. Mater. 25, 6334 (2013).

    Article  Google Scholar 

  3. A. Manthiram, S.-H. Chung, and C. Zu, Adv. Mater. 27, 1980 (2015).

    Article  Google Scholar 

  4. B.J. Landi, R.P. Raffaelle, Y.S.L. Castro, and S.G. Bailey, Prog. Photovolt. Res. Appl. 13, 165 (2005).

    Article  Google Scholar 

  5. P. Barber, S. Balasubramanian, Y. Anguchamy, and S. Gong, Materials 2, 1697 (2009).

    Article  Google Scholar 

  6. J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, and W. Borland, J. Electroceramics 14, 95 (2005).

    Article  Google Scholar 

  7. M. Shakir, B.K. Singh, R.K. Gaur, B. Kumar, G. Bhagavannarayana, and M.A. Wahab, Chalcogenide Lett. 6, 655 (2009).

    Google Scholar 

  8. M. Shakir, S.K. Kushawaha, K.K. Maurya, S. Kumar, M.A. Wahab, and G. Bhagavannarayana, J. Appl. Cryst. 43, 491 (2010).

    Article  Google Scholar 

  9. E. Manias, Nat. Mater. 6, 9 (2007).

    Article  Google Scholar 

  10. J.C. McDonald and G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002).

    Article  Google Scholar 

  11. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, ACS Nano 8, 5154 (2014).

    Article  Google Scholar 

  12. L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, and Q. Gao, Sci. Rep. 3, 3048 (2013).

    Article  Google Scholar 

  13. M. Amjadi, K.U. Kyung, and I. Park, Adv. Funct. Mater. 26, 1678 (2016).

    Article  Google Scholar 

  14. D. Ponnamma, K.K. Sadasivuni, and J.J. Cabibihan, Appl. Phys. Lett. 108, 171906 (2016).

    Article  Google Scholar 

  15. S. Cheng, Z. Wu, P. Hallbjorner, K. Hjort, and A. Rydberg, IEEE Trans. Antennas Propag. 57, 3765 (2009).

    Article  Google Scholar 

  16. S. Cheng, A. Rydberg, K. Hjort, and Z. Wu, Appl. Phys. Lett. 94, 144103 (2009).

  17. M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley, D. Ham, and G.M. Whitesides, Adv. Mater. 22, 2749 (2010).

    Article  Google Scholar 

  18. J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).

    Article  Google Scholar 

  19. S. Kumar, M. Sarita, M. Nehra, N. Dilbaghi, K. Tankeshwar, and K.H. Kim, Prog. Polym. Sci. 80, 1 (2018).

    Article  Google Scholar 

  20. R. B. V. B. Simorangkir, Y. Yang, R. M. Hashmi, T. Björninen, K. P. Esselle, and L. Ukkonen, IEEE Access. (2018). https://doi.org/10.1109/access.2018.2867696.

  21. J. Saji, A. Khare, R.N.P. Choudhary, and S.P. Mahapatra, J. Polym. Res. 21, 341 (2014).

    Article  Google Scholar 

  22. H.D. Tran, D. Li, and R.B. Kaner, Adv. Mater. 21, 1487 (2009).

    Article  Google Scholar 

  23. M. Wahlander, F. Nilsson, R.L. Andersson, C.C. Sanchez, N. Taylor, A. Carlmark, H. Hillborgand, and E. Malmstrom, J. Mater. Chem. A 5, 14241 (2017).

    Article  Google Scholar 

  24. R.C. Smith, C. Liang, M. Landry, J.K. Nelson, and L.S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 15, 187 (2008).

    Article  Google Scholar 

  25. N. Sankar, M.N. Reddy, and R.K. Prasad, Bull. Mater. Sci. 39, 47 (2016).

    Article  Google Scholar 

  26. P. Puri, R. Mehta, and S. Rattan, J. Electron. Mater. 44, 4255 (2015).

    Article  Google Scholar 

  27. S.K. Tiwari, R.N.P. Choudhary, and S.P. Mahapatra, J. Polym. Res. 20, 176 (2013).

    Article  Google Scholar 

  28. D. Wilkinson, J.S. Langer, and P.N. Sen, Phys. Rev. B 28, 1081 (1983).

    Article  Google Scholar 

  29. K.E. Wise, C. Park, E.J. Siochi, and J.S. Harrison, Chem. Phys. Lett. 391, 207 (2004).

    Article  Google Scholar 

  30. P. Ghosh and A. Chakrabarti, Euro. Polym. J. 36, 1043 (2000).

    Article  Google Scholar 

  31. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  Google Scholar 

  32. S.H. Jasem and W.A. Hussain, J. Basrah Res. (Sciences) 38, 60 (2012).

    Google Scholar 

  33. Z. Wang, W. Zhou, X. Sui, L. Dong, H. Cai, J. Zuo, and Q. Chen, J. Electron. Mater. 45, 3069 (2016).

    Article  Google Scholar 

  34. M.H. Al-Saleh and S.A. Jawad, J. Electron. Mater. 45, 3532 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, National Institute of Technology Raipur, India, for providing financial support from TEQIP and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhudendra Acharya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S., Goswami, S. & Acharya, B. Polydimethylsiloxane-Multiwalled Carbon Nanotube Nanocomposites as Dielectric Materials: Frequency, Concentration, and Temperature-Dependence Studies. J. Electron. Mater. 48, 2853–2864 (2019). https://doi.org/10.1007/s11664-019-07009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07009-9

Keywords

Navigation