Skip to main content
Log in

Ultimate Deoxidation Method of Titanium Utilizing Y/YOCl/YCl3 Equilibrium

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Deoxidation methods of titanium (Ti) scrap and Ti powder have become increasingly important in recent years. Some rare earth (RE) metals with strong deoxidizing capabilities, including Y, La, Ce, and Ho, are candidate agents for the development of a new deoxidation technology. In this study, a new method was developed to directly remove oxygen (O) from Ti using the Y/YOCl/YCl3 equilibrium. According to the calculation based on available thermodynamic data in the literature, the O concentration in β-Ti can be reduced to less than 10 ppm O at 1300 K (1027 °C) in the Y/YOCl/YCl3 equilibrium. To demonstrate the effectiveness of this method using the Y/YOCl/YCl3 equilibrium, the deoxidation limits of Ti samples using Y metal in YCl3 (l) or in YCl3-NaCl-KCl (l) at 1300 K (1027 °C) were experimentally investigated in this study. As a result, the O concentrations in the Ti samples were from 30 to 60 ppm O in YCl3 (l). This result revealed that Ti with extremely low O concentration can be reliably obtained using the RE/REOCl/RECl3 equilibrium for the first time. The establishment of this process will realize efficient recycling of Ti scrap and production of low O concentration Ti powder, which contribute to the large-scale use of Ti products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. L. Murray, H. A. Wriedt: J. Phase Equilibria, 1987, vol. 8, pp. 148–65.

    CAS  Google Scholar 

  2. [2] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, American Society for Metals, OH, U.S., 1990.

    Google Scholar 

  3. P. Waldner and G. Eriksson: Calphad, 1999, vol. 23, pp. 189–218.

    CAS  Google Scholar 

  4. [4] O. Takeda and T. H. Okabe: JOM, 2019, vol. 71, pp. 1981–90.

    CAS  Google Scholar 

  5. [5] K. Ono and S. Miyazaki: J. Jpn. Inst. Met., 1953, vol. 82, pp. 87–91.

    Google Scholar 

  6. [6] K.Ono, T. H. Okabe, M. Ogawa, and R. Suzuki: J. Iron Steel Inst. Jpn., 1990, vol. 76, pp. 86–93 (in Japanese).

    Google Scholar 

  7. T. H. Okabe, R. O. Suzuki, T. Oishi, and K. Ono: Mater. Trans.(JIM), 1991, vol.32, pp. 485–88.

    CAS  Google Scholar 

  8. J. -M. Oh, B. -G. Lee, S.-W. Cho, S. -W. Lee, G.-S. Choi, and J. -W. Lim: Met. Mater. Int., 2011, vol. 17, pp. 733–736.

    CAS  Google Scholar 

  9. J. -M. Oh, B. -K. Lee, C. -Y. Suh, S. -W. Cho and J. -W. Lim: Powder Metall., 2012, vol. 55, pp. 402–04.

    CAS  Google Scholar 

  10. J.W. Lim, J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho: US Patent No. 8,449,813, 2013.

  11. J.W. Lim, J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho: US Patent No. 8,449,646, 2013.

  12. J.-M. Oh, H. Kwon, W. Kim, and J.-W. Lim: Thin Solid Films, 2014, vol. 551, pp. 98–101.

    CAS  Google Scholar 

  13. J.-M. Oh, C.-Y Suh, H. Kwon, J.-W. Lim and K.-M. Roh: J. Korean Inst. Resour Recycle, 2015, vol. 24, pp. 21–27. (in Korean)

    CAS  Google Scholar 

  14. J. -M. Oh, I. -H. Choi, C. -Y. Suh, H. Kwon, J. -W. Lim, and K. -M. Roh: Met. Mater. Int., 2016, vol. 22, pp. 488–92.

    CAS  Google Scholar 

  15. S.-J. Kim, J.-M. Oh, and J.-W. Lim: Met. Mater. Int., 2016, vol. 22, pp. 658–62.

    CAS  Google Scholar 

  16. C.-I. Hong, J.-M. Oh, J. Park, J.-M. Yoon, and J.-W. Lim: Adv. Powder Technol, 2018, vol. 29, pp. 1640–43.

    CAS  Google Scholar 

  17. J.-M. Oh, C.-I. Hong, J.-W. Lim: Adv. Powder Metall., 2019, vol. 30, pp. 1–5.

    CAS  Google Scholar 

  18. R.L. Fisher: US Patent No. 4,923,531, 1990.

  19. R.L. Fisher: US Patent 5022935, 1991.

  20. R.L. Fisher: US Patent 5211775A, 1993.

  21. R.L. Fisher and S.R. Seagle: Proceedings of the 7th World Conference on Titanium, 1993, vol. 3, pp. 2265–72.

  22. S.R. Seagle: Proceedings of the International Conference on Titanium Products and Applications, 1990, pp. 66–73.

  23. T.H. Okabe, R. Suzuki, T. Oishi, and K. Ono: Tetsu-to-Hagane, 1991, vol. 77, pp. 93–99 (in Japanese).

    CAS  Google Scholar 

  24. T.H. Okabe, M. Nakamura, T. Ueki, T. Oishi, and K. Ono: Bulletin of the Japan Institute of Metals, 1992, vol. 31, pp. 315–317 (in Japanese).

    Google Scholar 

  25. T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.

    CAS  Google Scholar 

  26. T.H. Okabe, T. Oishi, and K. Ono: Metall. Mater. Trans. B, 1992, vol. 23, pp. 583–90.

    CAS  Google Scholar 

  27. S.-M. Han, Y.-S. Lee, J.-H. Park, G.-S. Choi, and D.-J. Min: Mater. Trans. (JIM), 2009, vol. 50, pp. 215–218.

    CAS  Google Scholar 

  28. Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free: J. Mater Sci., 2017, vol. 52, pp. 4120–28.

    CAS  Google Scholar 

  29. T.H. Okabe, M. Nakamura, T. Oishi and K. Ono: Metall. Mater. Trans. B, 1993, vol. 24, pp. 449–55.

    CAS  Google Scholar 

  30. M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono: Proceedings of the International Symposium on Molten Salt Chemistry and Technology, Hawaii, U.S., 1993, pp. 529–40.

  31. T. Oishi, T.H. Okabe, and K. Ono: J. Inst. Light Met., 1993, vol. 43, 1993, pp. 392–400.

    CAS  Google Scholar 

  32. T.H. Okabe, Y. Hamanaka, and Y. Taninouchi: Faraday Discuss., 2016, vol. 190, pp. 109–126.

    CAS  Google Scholar 

  33. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe: Metall. Mater. Trans. B, 2016, vol.47, pp. 3394–3404.

    Google Scholar 

  34. Y. Taninouchi, Y. Hamanaka, and T.H. Okabe: Mater. Trans. (JIM), 2016, vol. 57, pp. 1309–18.

    CAS  Google Scholar 

  35. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    CAS  Google Scholar 

  36. D. J. Fray: JOM, 2001, vol. 53, pp. 26–31.

    CAS  Google Scholar 

  37. G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, p.1041–52.

    CAS  Google Scholar 

  38. G.Z. Chen, D.J. Fray, and T.W. Farthing: US Patent, No 2004/0159559 A1, 2004.

  39. K.S. Mohandas and D.J. Fray: Trans. Indian Inst. Met., 2004, vol. 57, p.579–592.

    CAS  Google Scholar 

  40. P.K. Tripathy, M. Gauthier, and D.J .Fray: Metall. Mater. Trans. B, 2007, vol. 38, pp. 893–900.

    CAS  Google Scholar 

  41. Metalysis Corporation: https://www.metalysis.com/technology/. Accessed on August 2019.

  42. T.H. Okabe, T. Deura, T. Oishi, K. Ono, and D.R. Sadoway: J. Alloys Compd., 1996, vol. 237, pp. 150–154.

    CAS  Google Scholar 

  43. T.H. Okabe, T. Deura, T. Oishi, K. Ono, and D.R. Sadoway: Metall. Trans. B, 1996, vol.27, pp. 841–47.

    CAS  Google Scholar 

  44. T. H. Okabe, K. Hirota, E. Kasai, F. Saito, Y. Waseda, and K. T. Jacob: J. Alloys Compd., 1998, vol. 279, pp. 184–91.

    CAS  Google Scholar 

  45. T. H. Okabe, K. Hirota, Y. Waseda, and K. T. Jacob: Journal of MMIJ, 1998, vol.114, pp. 813–818.

    CAS  Google Scholar 

  46. C. Zheng, T. Ouchi, A. Iizuka, Y. Taninouchi, and T. H. Okabe: Mater. Trans. B, 2019, vol. 50, pp. 622–31.

    Google Scholar 

  47. C.Zheng, T. Ouchi, L. Kong, Y. Taninouchi, and T. H. Okabe: Metall Mater Trans B, 2019, vol. 50, pp. 1652–61.

    Google Scholar 

  48. L. Kong, T. Ouchi, and T. H. Okabe: Mater. Trans. (JIM), 2019, vol. 60, pp. 2059–2068.

    CAS  Google Scholar 

  49. L. Kong, T. Ouchi, and T.H. Okabe: J. Electrochem. Soc., 2019, vol. 166, pp. 429–437.

    Google Scholar 

  50. T. H. Okabe, C. Zheng, Y. Taninouchi: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1056–66.

    Google Scholar 

  51. T. H. Okabe, Y. Taninouchi, C. Zheng: Metall. Mater. Trans. B, 2018, vol. 49, pp 3107–311.

    Google Scholar 

  52. Roskill Information Services: Rare Earths: Global Industry, Markets and Outlook to 2026, 16th Edition. Roskill Information Services, London, 2016.

    Google Scholar 

  53. O. Takeda, T. H. Okabe: Metall. Mater. Trans. E, 2014, vol. 1, pp 160–73.

    Google Scholar 

  54. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., Wiley-VCH, Weinheim, Germany, 1995.

    Google Scholar 

  55. Y. B. Patrikeev, G. I. Novikov, and V. V. Badovskii, Russ. J. Phys. Chem., 1973, vol. 47, p. 284.

    Google Scholar 

  56. C. J. Rosa, Metall. Trans., 1970, vol. 1 (9), pp. 2517–22.

    CAS  Google Scholar 

  57. F. Swanson: Natl. Bur. Stand., vol. 2, 1953, p.41.

    Google Scholar 

  58. J. Welton and G. McCarthy: North Dakota State University, Fargo, NF, USA, 1989.

  59. S. Katagiri, N. Ishikawa, and F. Marumo: Powder Diffr., vol. 8, 1993, p. 60.

    Google Scholar 

  60. H. E. Swanson, E. Tatge, and R. K. Fuyat: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards, Washington, 1962, p. 51.

    Google Scholar 

  61. D.H. Templeton and G.F. Carter: J. Phys. Chem., 1954, vol. 58, pp. 940–944.

    CAS  Google Scholar 

  62. E. Sonneveld: Technisch Physische Diest, Delft, Netherlands.

  63. M.A.C. Wevers, J.C. Schoen, M. Jansen, J. Solid State Chem., 1998, vol. 136, p.233.

    CAS  Google Scholar 

  64. Japan Oil, Gas and Metals National Corporation: http://mric.jogmec.go.jp/wp-content/uploads/2019/03/material_flow2018_Ti.pdf. Accessed on August 2019. (in Japanese).

  65. Arum Publishing Company: Rare Metal News No. 2807, July 2018 issue, Tokyo, Japan, 2018. (in Japanese).

Download references

Acknowledgments

The authors are grateful to Dr. Lingxin Kong and Mr. Takara Tanaka at The University of Tokyo for their helpful suggestions and help in the experiments. This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (s) (KAKENHI Grant Nos. 26220910, and 19H05623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanari Ouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 13, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iizuka, A., Ouchi, T. & Okabe, T.H. Ultimate Deoxidation Method of Titanium Utilizing Y/YOCl/YCl3 Equilibrium. Metall Mater Trans B 51, 433–442 (2020). https://doi.org/10.1007/s11663-019-01742-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01742-6

Navigation