Skip to main content
Log in

Carbonaceous Material Properties and Their Interactions with Slag During Electric Arc Furnace Steelmaking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The state of the interface between slag and carbon determines the slag foaming behavior and thus the effectiveness of carbon in electric arc furnace (EAF) steelmaking. This paper explores the interaction between synthetic slag and carbonaceous materials derived from various sources, including bio-char produced by two different technologies, graphite, coke, and char from tire pyrolysis. Different interfacial phenomena were found between slag and the carbonaceous materials examined. The interactions between bio-char and slag are found to be poor in comparison with other carbonaceous materials. Carbonaceous materials were characterized in terms of their chemical composition and the results obtained suggested that interfacial phenomena were not dominated by ash in the carbonaceous material. The effects of carbon crystalline structure on interaction with slag were evaluated by Raman spectroscopy and X-ray diffraction. Surface properties of the samples were evaluated using scanning electron microscopy, and surface morphology was identified as the principal factor affecting the interaction of slag on carbonaceous particles. The smooth surface of bio-char results in reduced slag foaming. This finding forms the basis for future research on the production of bio-char to be used as a slag foaming agent in EAF steelmaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Sahajwalla, M. Rahman, L. Hong, N. Saha-Chaudhury, and D. Spencer: AISTech—Iron and Steel Technology Conference Proceedings, 2005, vol. 1, pp. 639–50.

  2. R. Corbari, H. Matsuura, S. Halder, M. Walker, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2009, vol. 40, pp. 940–8.

    Article  Google Scholar 

  3. J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.

    Article  Google Scholar 

  4. P. Migas and M. Karbowniczek: Arch. Metall. Mater., 2010, vol. 55, pp. 1147–57.

    Article  Google Scholar 

  5. M. Rahman, V. Sahajwalla, R. Khanna, N. Saha-Chaudhury, D. Knights’, and P. O’Kane: AISTech—Iron and Steel Technology Conference Proceedings, 2006, vol. 1, pp. 491–97.

  6. S.L. Teasdale and P.C. Hayes: ISIJ Int., 2005, vol. 45, pp. 634–41.

    Article  Google Scholar 

  7. M. Rahman, R. Khanna, V. Sahajwalla, and P. O'Kane: ISIJ Int., 2009, vol. 49, pp. 329–36.

    Article  Google Scholar 

  8. B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1996, vol. 27, pp. 717–30.

    Article  Google Scholar 

  9. A.S. Mehta and V. Sahajwalla: ISIJ Int., 2003, vol. 43, pp. 1512–8.

    Article  Google Scholar 

  10. N.F.M. Yunos, M. Zaharia, M.A. Idris, D. Nath, R. Khanna, and V. Sahajwalla: Energy Fuels, 2012, vol. 26, pp. 278–86.

    Article  Google Scholar 

  11. M. Zaharia, N.F. Yunos, and V. Sahajwalla: Mater Struct Adv Innov, 2013, vol. 21, p. 7.

    Google Scholar 

  12. A. Funke, T. Demus, T. Willms, L. Schenke, T. Echterhof, A. Niebel, H. Pfeifer, and N. Dahmen: Fuel Process. Technol., 2018, vol. 174, pp. 61–8.

    Article  Google Scholar 

  13. A. Kalde, T. Willms, T. Demus, T. Echterhof, and H. Pfeifer: 24th European Biomass Conference and Exhibition, vol. 2016, 2016, pp. 1642–9.

  14. T. Meier, T. Hay, T. Echterhof, H. Pfeifer, T. Rekersdrees, L. Schlinge, S. Elsabagh, and H. Schliephake: Steel Res. Int. 1:1–12 (2017). doi:10.1002/srin.201600458.

    Google Scholar 

  15. S. Kongkarat, R. Khanna, P. Koshy, P. O’Kane, and V. Sahajwalla: ISIJ Int., 2012, vol. 52, pp. 385–93.

    Article  Google Scholar 

  16. D.-J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23, pp. 29–37.

    Article  Google Scholar 

  17. J.-D. Seo and S.-H. Kim: Steel Res., 1998, vol. 69, pp. 307–11.

    Article  Google Scholar 

  18. S.R. Story, B. Sarma, R.J. Fruehan, A.W. Cramb, and G.R. Belton: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1998, vol. 29, pp. 929–32.

    Article  Google Scholar 

  19. J.F. Gransden, J.T. Price, and N.J. Ramey: CANMET Rep. Can. Cent. Miner. Energy Technol

  20. A. Bhattacharyya, J. Schenk, G. Arth, H. Stacker, and C. Thaler: AISTech—Iron and Steel Technology Conference Proceedings, 2015, vol. 1, pp. 713–21.

  21. S. Kongkarat, B. Cherdhirunkorn, and R. Thongreang: Steel Res. Int. 1:1-12 (2017). doi:10.1002/srin.201600168.

    Google Scholar 

  22. S. Maroufi, M. Mayyas, I. Mansuri, P. O’Kane, C. Skidmore, Z. Jin, A. Fontana, and V. Sahajwalla: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2017, vol. 48, pp. 2316–23.

    Article  Google Scholar 

  23. A.S. Mehta and V. Sahajwalla: Scand. J. Metall., 2000, vol. 29, pp. 17–29.

    Article  Google Scholar 

  24. J.R. Dankwah, V. Sahajwalla, P. Koshy, N.M. Saha-Chaudhury, P. O’Kane, C. Skidmore, and D. Knights: AISTech—Iron and Steel Technology Conference Proceedings, 2010, pp. 895–903.

  25. T. Demus, T. Reichel, M. Schulten, T. Echterhof, and H. Pfeifer: Ironmak. Steelmak., 2016, vol. 43, pp. 564–70.

    Article  Google Scholar 

  26. M.A. Duchesne and R.W. Hughes: Fuel, 2017, vol. 188, pp. 173–81.

    Article  Google Scholar 

  27. A. Gutiérrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, and J. Martínez-Fernández: J. Power Sources, 2015, vol. 278, pp. 18–26.

    Article  Google Scholar 

  28. J. Ramirez-Rico, A. Gutierrez-Pardo, J. Martinez-Fernandez, V.V. Popov, and T.S. Orlova: Mater. Des., 2016, vol. 99, pp. 528–34.

    Article  Google Scholar 

  29. X. Huang, D. Kocaefe, and Y. Kocaefe: Energy Fuels, 2018, vol. 32, pp. 8537–44.

    Article  Google Scholar 

  30. Y. Sasaki and T. SOma: Metall. Trans. B, 1977, vol. 8, pp. 189–90.

    Article  Google Scholar 

  31. K.C. Mills and J.M. Rhine: Fuel, 1989, vol. 68, pp. 193–200.

    Article  Google Scholar 

  32. M.A. Duchesne, A.M. Bronsch, R.W. Hughes, and P.J. Masset: Fuel, 2013, vol. 114, pp. 38–43.

    Article  Google Scholar 

  33. D. Skupien and D.R. Gaskell: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2000, vol. 31, pp. 921–5.

    Article  Google Scholar 

  34. X. Li, J. -i. Hayashi, and C.-Z. Li: Fuel, 2006, vol. 85, pp. 1700–7.

    Article  Google Scholar 

  35. Y. Wang, D.C. Alsmeyer, and R.L. McCreery: Chem. Mater., 1990, vol. 2, pp. 557–63.

    Article  Google Scholar 

  36. S. Dong, P. Alvarez, N. Paterson, D.R. Dugwell, and R. Kandiyoti: Energy Fuels, 2009, vol. 23, pp. 1651–61.

    Article  Google Scholar 

  37. R.N. Wenzel: Ind. Eng. Chem., 1936, vol. 28, pp. 988–94.

    Article  Google Scholar 

  38. K.W. Ng, J.A. MacPhee, L. Giroux, and T. Todoschuk: Fuel Process. Technol., 2011, vol. 92, pp. 801–4.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by Natural Resources Canada through the Energy Innovation Program (EIP). The authors would like to thank members of the Canadian Carbonization Research Association (CCRA) for their technical contributions. Assistance with preparing samples for SEM by the laboratory of Professor K. Liu of the University of Quebec at Chicoutimi is greatly appreciated. The authors also appreciate the work of Ms. Ami Patel, a University of Waterloo co-op student, for her valuable assistance with the tensiometer tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ai Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XA., Ng, K.W., Giroux, L. et al. Carbonaceous Material Properties and Their Interactions with Slag During Electric Arc Furnace Steelmaking. Metall Mater Trans B 50, 1387–1398 (2019). https://doi.org/10.1007/s11663-019-01569-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01569-1

Navigation