Skip to main content
Log in

Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.Y. Lee, C.S. Yoo, A. Kermanpur, and Y.K. Lee: J. Alloy Compd., 2014, vol. 583, pp. 357-360.

    Article  CAS  Google Scholar 

  2. M. Calmunger, G. Chai, R. Eriksson, S. Johansson, and J.J. Moverare: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4525-4538.

    Article  Google Scholar 

  3. G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, Ł. Gondek, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4999-5008.

    Article  Google Scholar 

  4. S.S. SatheeshKumar, M. Vasanth, VajinderSingh, P. Ghosal, and T. Raghu: J. Alloy. Compd., 2017, vol. 699, pp. 1036-1048.

    Article  CAS  Google Scholar 

  5. L. Deibler, A. Brown, and J. Puskar: Metallogr. Microstruct. Anal., 2017, vol. 6, pp. 3-11.

    Article  CAS  Google Scholar 

  6. M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4210-4216.

    Article  Google Scholar 

  7. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236-245.

    Article  CAS  Google Scholar 

  8. C.X. Huang, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, and Y.T. Zhu: Mater. Res. Lett., 2015, vol. 3, pp. 88-94.

    Article  CAS  Google Scholar 

  9. F. Bottoli, G. Winther, T.L. Christiansen, K. Vinter Dahl, and M.A.J. Somers: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4146-4159.

    Article  Google Scholar 

  10. F. Borgioli, E. Galvanetto, and T. Bacci: Vacuum, 2016, vol. 127, pp. 51-60.

    Article  CAS  Google Scholar 

  11. Y.S. Kim, S.H. Bak, and S.S. Kim: Metall. Mater. Trans. A, 2016, vol. 47, pp. 222-230.

    Article  Google Scholar 

  12. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, and Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 873-881.

    Article  Google Scholar 

  13. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock Jr.: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1875-1886.

    Article  CAS  Google Scholar 

  14. K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 721-727.

    Article  CAS  Google Scholar 

  15. A. Di Schino, M. Salvatori, and J.M. Kenny: J. Mater. Sci., 2002, vol. 7, pp. 4561-4565.

    Article  Google Scholar 

  16. D.L. Johannsen, A. Kyrolinen, and P.J. Ferriera: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325-2338.

    Article  CAS  Google Scholar 

  17. A.F. Padilha, R.L. Plaut, and P.R. Rios: ISIJ Int., 2003, vol. 43, pp. 135-143.

    Article  CAS  Google Scholar 

  18. K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-1437.

    Article  CAS  Google Scholar 

  19. R.D.K. Misra, J.S. Shah, S. Mali, P.K.C. Venkata Surya, M.C. Somani, and L.P. Karjalainen: Mater. Sci. Tech., 2013, vol. 29, pp. 1185-1192.

    Article  CAS  Google Scholar 

  20. A. Poulon-Quintin, S. Brochet, J.B. Vogt, J.C. Glez, and J.D. Mithieux: ISIJ Int., 2009, vol. 49, pp. 293-301.

    Article  CAS  Google Scholar 

  21. M. Shirdel, H. Mirzadeh, and M.H. Parsa: Mater. Charact., 2015, vol. 103, pp. 150-161.

    Article  CAS  Google Scholar 

  22. C. Celada-Casero, B.M. Huang, M.M. Aranda, J.-R. Yang, and D. San Martin: Mater. Charact., 2016, vol. 118, pp. 129-141.

    Article  CAS  Google Scholar 

  23. T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165-174.

    CAS  Google Scholar 

  24. K. Nohara, Y. Ono, N. Ohashi: J. Iron Steel Inst. Jpn., 1977, vol. 63, pp. 212-222.

    Google Scholar 

  25. S.K. Varma, J. Kalyanam, L.E. Murr, and V. Srinivas: J. Mater. Sci. Lett., 1994, vol. 13, pp. 107-111.

    Article  CAS  Google Scholar 

  26. V. Seetharaman and R. Krishnan: J. Mater. Sci., 1981, vol 16, pp. 523-530.

    Article  CAS  Google Scholar 

  27. M. Eskandari, A. Najafizadeh, and A. Kermanpur: Mater. Sci. Eng. A, 2009, vol. 519, pp. 46-50.

    Article  Google Scholar 

  28. V. Shrinivas, S.K. Varma, and L.E. Murr: Metall. Mater. Trans. A, 1995, vol. 26, pp. 661-671.

    Article  CAS  Google Scholar 

  29. N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki: Acta Mater., 2010, vol. 58, pp. 895-903.

    Article  CAS  Google Scholar 

  30. M. Odnobokova, A. Belyakov, and R. Kaibyshev: Adv. Eng. Mater., 2015, vol. 17, pp. 1812-1820.

    Article  CAS  Google Scholar 

  31. K. Spencer, M. Veron, K. Yu-Zhang, and J.D. Embury: Mater. Sci. Technol., 2009, vol. 25, pp. 7-17.

    Article  CAS  Google Scholar 

  32. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514-522.

    Article  CAS  Google Scholar 

  33. G. Fargas, A. Zapata, J.J. Roa, I. Sapezanskaia, and A. Mateo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5697-5707.

    Article  Google Scholar 

  34. M. Okayasu, H. Fukui, H. Ohfuji, and T. Shiraishi: J. Mater. Sci., 2013, vol. 48, pp. 6157-6166.

    Article  CAS  Google Scholar 

  35. H. Mirzadeh and A. Najafizadeh: Mater. Charact., 2008, vol. 59, pp. 1650-1654.

    Article  CAS  Google Scholar 

  36. A. Kisko, A.S. Hamada, J. Talonen, D. Porter, and L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359-370.

    Article  CAS  Google Scholar 

  37. P. Behjati, A. Kermanpur, L.P. Karjalainen, A. Järvenpää, M. Jaskari, H. Samaei Baghbadorani, A. Najafizadeh, and A. Hamada: Mater. Sci. Eng. A, 2016, vol. 650, pp. 119-128.

    Article  CAS  Google Scholar 

  38. M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5698- 5703.

    Article  Google Scholar 

  39. M. Shirdel, H. Mirzadeh, and M.H. Parsa: Mater. Sci. Eng. A, 2015, vol. 624, pp. 256-260.

    Article  CAS  Google Scholar 

  40. H. Mirzadeh, M. Alibeyki, and M. Najafi: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4565-4573.

    Article  Google Scholar 

  41. 42. B. Fultz and J. Howe: Transmission electron microscopy and diffractometry of materials, 3rd ed., Springer, Berlin, Germany, 2008.

    Google Scholar 

  42. A. Etienne, B. Radiguet, C. Genevois, J.M. Le Breton, R. Valiev, and P. Pareige: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5805-5810.

    Article  Google Scholar 

  43. G.B. Olson and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107-118.

    Article  CAS  Google Scholar 

  44. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  45. F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 387- 396.

    CAS  Google Scholar 

  46. J.C. Li, M. Zhao, and Q. Jiang: Metall. Mater. Trans. A, 2000, vol. 31, pp. 581-584.

    Article  CAS  Google Scholar 

  47. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345- 1351.

    Article  CAS  Google Scholar 

  48. F. Gauzzi, R. Montanari, G. Principi, A. Perin, M.E. Tata: Mater. Sci. Eng. A, 1999, vol. 273-275, pp. 443-447.

    Article  Google Scholar 

  49. M. Eskandari, A. Kermanpur, A. Najafizadeh: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2241-2249.

    Article  CAS  Google Scholar 

  50. M. McGuire: Stainless Steels for Design Engineers, ASM International, Almere, 2008.

    Google Scholar 

  51. C.M. Hammond: Cobalt, 1964, vol. 25, pp. 195-202.

    CAS  Google Scholar 

  52. G.H. Eichelman and F.C. Hull: Trans. Am. Soc. Met., 1953, vol. 45, pp. 77-95.

    Google Scholar 

  53. S. Yamamoto, T. Sakiyama, and C. Ouchi: Trans. ISIJ., 1987, vol. 27, pp. 446-452.

    Article  CAS  Google Scholar 

  54. A. Di Schino, J.M. Kenny, and G. Abbruzzese: J. Mater. Sci., 2002, vol. 37, pp. 5291-5298.

    Article  Google Scholar 

  55. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, Boca Raton, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Manuscript submitted September 30, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghizadeh, M., Mirzadeh, H. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel. Metall Mater Trans A 49, 2248–2256 (2018). https://doi.org/10.1007/s11661-018-4583-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4583-6

Navigation