Skip to main content
Log in

Volume estimation of small scale debris flows based on observations of topographic changes using airborne LiDAR DEMs

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

This paper describes a geographic information system (GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using high-resolution light detection and ranging (LiDAR) digital elevation models (DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system (GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann F (1999) Airborne laser scanning — present status and future expectations. ISPRS Journal of Photogrammetry and Remote Sensing 54(2–3): 64–67. DOI: 10.1016/S0924-2716(99)00009-X

    Article  Google Scholar 

  • Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90(1–2): 144–161. DOI: 10.1016/j.geomorph.2007.01.014

    Article  Google Scholar 

  • Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53: 299–316. DOI: 10.1016/S0169-555X(02)00320-3

    Article  Google Scholar 

  • Bremer M, Sass O (2012) Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow events. Geomorphology 138: 49–60. DOI: 10.1016/j.geomorph.2011.08.024

    Article  Google Scholar 

  • Bull JM, Miller H, Gravley DM, et al. (2010) Assessing debris flow using LiDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology 124(1–2):75–84. DOI: 10.1016/j.geomorph.2010.08.011

    Article  Google Scholar 

  • Carrara A, Guzzetti F (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards 20(2–3): 117–135. DOI: 10.1023/A:1008097111310

    Article  Google Scholar 

  • Cavalli M, Tarolli P, Marchi L, et al. (2008) The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena 73(3): 249–260. DOI: 10.1016/j.catena.2007.11.001

    Article  Google Scholar 

  • Chandler J (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surface Processes and Landforms 24(1): 51–63. DOI: 10.1002/(SICI)1096-9837(199901)24:1〈51::AID-ESP948〉3.0.CO;2-H

    Article  Google Scholar 

  • Clark ML, Clark DB, Roberts DA (2004) Small-footprint LiDAR estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment 91(1): 68–89. DOI: 10.1016/j.rse.2004.02.008

    Article  Google Scholar 

  • Conoscenti C, Maggio CD, Rotigliano E (2008) GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94(3–4): 325–339. DOI: 10.1016/j.geomorph.2006.10.039

    Article  Google Scholar 

  • Crosta GB, Cucchiaro S, Frattini P (2003) Validation of semiempirical relationships for the definition of debris-flow behaviour in granular materials. Proceedings of 3rd International Conference on Debris Flows Hazards Mitigation: Mechanics, Prediction and Assessment, Millpress, Rotterdam. pp.821–831.

    Google Scholar 

  • Dai FC, Lee CF, Li J, et al. (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology 40(3): 381–391. DOI: 10.1007/s002540000163

    Article  Google Scholar 

  • DeLong SB, Prentice CS, Hilley GE, et al. (2012) Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow. Earth Surface Process and Landforms 37(3): 262–272. DOI: 10.1002/esp.2234

    Article  Google Scholar 

  • Du JC, Teng HC (2007) 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction 16(5): 657–663. DOI: 10.1016/j.autcon.2006.11.002

    Article  Google Scholar 

  • Gartner JE, Cannon SH, Santi PM, et al. (2008) Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S. Geomorphology 96(3–4): 339–354. DOI: 10.1016/j.geomorph.2007.02.033

    Article  Google Scholar 

  • Griswold JP (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master thesis, Portland State University, USA.

    Google Scholar 

  • Han JH, Kwon JH, Hong CK (2010) Analysis of network-RTK(VRS) positioning accuracy for surveying public control point. Journal of the Korean Society for Geospatial Information System 18(2): 13–20. (In Korean)

    Google Scholar 

  • Hooper DM, Bursik MI, Webb FH (2003) Application of highresolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada — California, USA. Remote Sensing of Environment 84(2): 255–267. DOI: 10.1016/S0034-4257(02)00110-4

    Article  Google Scholar 

  • Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. Journal of Fluid Mechanics 374(1): 305–333. DOI: 10.1017/S0022112098002845

    Article  Google Scholar 

  • Hunt B (1994) Newtonian fluid mechanics treatment of debris flows and avalanches. Journal of Hydraulic Engineering, ASCE 120(12): 1350–1363. DOI: 10.1016/0148-9062(95)97151-8

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geotechnical Society of America Bulletin 110(8): 972–984. DOI: 10.1130/0016-7606

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellan A, et al. (2012) Use of LiDAR in landslide investigations: a review. Natural Hazards 61: 5–28. DOI: 10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Kim HI, Yu GS, Park, KD, et al. (2008) Accuracy evaluation of VRS RTK surveys inside the GPS CORS network operated by National Geographic Information Institute. Journal of Korean Society of Surveying Geodesy Photogrammetry and Cartography 26(2): 139–147. (In Korean)

    Google Scholar 

  • Korea Meteorological Administration (2010) 2010 abnormal climate special report. 11-1360000-000705-01. (In Korean)

    Google Scholar 

  • Korean Geotechnical Society (2011) Umyeon mountain landslide investigation and restoration countermeasure establishment report. KSG11-250. (In Korean)

    Google Scholar 

  • Lee S. (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surface Processes and Landforms 32(14): 2133–2148. DOI: 10.1002/esp.1517

    Article  Google Scholar 

  • Lee SW, Kim G, Yune CY, et al. (2013) Development of landslide-risk assessment model for mountainous regions in eastern Korea. Disaster Advances 6(6): 70–79.

    Google Scholar 

  • Marchi L, D’Agostino V (2004) Estimation of debris-flow magnitude in the eastern Italian Alps, Earth Surface Processes and Landforms 29(2): 207–220. DOI: 10.1002/esp.1027

    Article  Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57(3–4): 331–351. DOI: 10.1016/S0169-555X(03)00164-8

    Article  Google Scholar 

  • Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using newmark’s method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering 18(4): 305–323. DOI: 10.1016/S0267-7261(98)00048-7

    Article  Google Scholar 

  • Montane JM, Torres R (2006) Accuracy assessment of LiDAR saltmarsh topographic data using RTK GPS. Photogrammetric Engineering and Remote Sensing 72(8): 961–967.

    Article  Google Scholar 

  • Naef D, Rickenmann D, Rutschmann P, et al. (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Sciences 6(1): 155–165. DOI: 10.5194/nhess-6-155-2006

    Article  Google Scholar 

  • Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology 110(1–2): 11–20. DOI: 10.1016/j.enggeo.2009.10.001

    Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, ASCE 119(2): 244–261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology 69(3–4): 331–343. DOI: 10.1016/S0013-7952(03)00069-3

    Article  Google Scholar 

  • Quadros ND, Collier PA, Fraser CS (2008) Integration of bathymetric and topographic LiDAR: a preliminary investigation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36, Beijing, China. pp 1299–1304.

    Google Scholar 

  • Refice A, Capolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers & Geosciences 28(6): 735–749. DOI: 10.1016/S0098-3004(01)00104-2

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Natural Hazards 19(1): 47–77. DOI: 10.1023/A:1008064220727

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, et al. (2006) Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10(2): 241–264. DOI: 10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Scheidl C, Rickenmann D, Chiari M (2008) The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Natural Hazards and Earth System Sciences 8(5): 1113–1127. DOI: 10.5194/nhess-8-1113-2008

    Article  Google Scholar 

  • Trimble Navigation, Ltd. (2002) 5700/5800 GPS Receiver User Guide, Version1.0, Revision A, Trimble Navigation, Limited.

    Google Scholar 

  • Tsutsui K, Rokugawa S, Nakagawa H, et al. (2007) Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from highresolution satellite stereo imagery. IEEE Transactions on Geoscience and Remote Sensing 45(6): 1681–1696. DOI: 10.1109/TGRS.2007.895209

    Article  Google Scholar 

  • Wang C, Li S, Esaki T (2008) GIS-based two-dimensional numerical simulation of rainfall-induced debris flow. Natural Hazards and Earth System Sciences 8(1):47–58. DOI: 10.5194/nhess-8-47-2008

    Article  Google Scholar 

  • Wheaton JM, Brasington J, Darby SE, et al. (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms 35(2): 136–156. DOI: 10.1002/esp.1886

    Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC et al. (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3): 274–287. DOI: 10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yune CY, Chae YK, Paik J, et al. (2013) Debris flow in metropolitan area — 2011 Seoul debris flow. Journal of Mountain Science 10(2): 199–206. DOI: 10.1007/s11629-013-2518-7

    Article  Google Scholar 

  • Zhou G, Esaki T, Mitani Y, et al. (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology 68(3–4): 373–386. DOI: 10.1016/S0013-7952(02)00241-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gihong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S.W., Yune, CY. et al. Volume estimation of small scale debris flows based on observations of topographic changes using airborne LiDAR DEMs. J. Mt. Sci. 11, 578–591 (2014). https://doi.org/10.1007/s11629-013-2829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-013-2829-8

Keywords

Navigation