Skip to main content
Log in

Novel and efficient transformation of wild passion fruit (Passiflora cincinnata Mast.) using sonication-assisted Agrobacterium-mediated transformation

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Passiflora cincinnata stands out among Passifloraceae because of its medicinal properties and its resistance to pathogens, which promotes its use as a rootstock for other Passiflora species. A valuable strategy for obtaining disease-resistant passion fruit plants is represented by genetic transformation; however, this requires efficient regeneration. Here, we aimed to establish an efficient protocol for generating transgenic passion fruit plants using sonication-assisted Agrobacterium-mediated transformation of somatic embryos. The latter were obtained from anthers, sonicated, and exposed to an Agrobacterium suspension for 15 or 30 s. As a comparison, non-sonicated embryos were also exposed to the same bacterial treatment, whereas non-infected embryos were used as controls. Plant identity was confirmed by PCR, qPCR, and histochemical assay. Transgenic plants were obtained at higher rates in the treatments applying sonication. Overall, 171 plantlets were regenerated, 38 of which showed stable uidA reporter gene expression. Of these 38 transgenic plants, 22 (57.89%) and 13 (34.21%) were obtained by sonication-assisted Agrobacterium-mediated transformation for 30 s and 15 s, respectively, whereas the remaining 3 (7.89%) were exposed for 30 s but without prior sonication. Our results indicate that sonication-assisted Agrobacterium-mediated transformation for 30 s enhanced transformation efficiency in P. cincinnata. We believe that this system will allow for more efficient production of transgenic passion fruit plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    Article  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinational regulation of transcription in plants. Science 250:959–966. https://doi.org/10.1007/s00299-011-1133-8

  • Bunnag S, Chamnanpon N (2016) Regeneration and transformation of purple passion fruit (Passiflora edulis S.) via Agrobacterium tumefaciens. Acta Hortic 1110:215–222. https://doi.org/10.17660/ActaHortic.2016.1110.31

    Article  Google Scholar 

  • Carmo TVB, Martins LSS, Santos RM, Silva MM, Santos JPO (2017) Diversidade genética em acessos de Passiflora cincinnata Mast. baseada em descritores morfoagronômicos e marcadores moleculares. Rev Caatinga 30:68–77

    Article  Google Scholar 

  • Cerqueira-Silva CBM, Jesus ON, Santos ESL, Corrêa RX, Souza AP (2014) Genetic breeding and diversity of the genus Passiflora: progress and perspectives in molecular and genetic studies. Int J Mol Sci 15:14122–14152. https://doi.org/10.3390/ijms150814122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YM, Dong YH, Liang ZB, Zhang LH, Deng YZ (2018) Enhanced vascular activity of a new chimeric promoter containing the full CaMV 35S promoter and the plant XYLOGEN PROTEIN 1 promoter. 3 Biotech 8:380. https://doi.org/10.1007/s13205-018-1379-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa MF, Pinto APC, Rezende AM, Harakava R, Mendes BMJ (2015) Genetic transformation of sweet passion fruit (Passiflora alata) and reactions of the transgenic plants to Cowpea aphid borne mosaic virus. Euro J Plant Pathol 14:3813–3821

    Google Scholar 

  • Dattgonde N, Tiwari S, Sapre S, Gontia-Mishra I (2019) Genetic transformation of oat mediated by Agrobacterium is enhanced with sonication and vacuum infiltration. Iran J Biotechnol. https://doi.org/10.21859/ijb.1563

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gaba V, Kathiravan K, Amutha S, Singer S, Xiaodi X, Ananthakrishnan G (2008) The uses of ultrasound in plant tissue culture. In: Plant tissue culture engineering. Springer, Dordrecht, pp 417–426. https://doi.org/10.1007/978-1-4020-3694-1_22

    Chapter  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3001–3907

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:27–137

    Google Scholar 

  • Klimek-Chodacka M, Baranski R (2014) A protocol for sonication-assisted Agrobacterium rhizogenes-mediated transformation of haploid and diploid sugar beet (Beta vulgaris L.) explants. Acta Biochim Pol 61. https://doi.org/10.18388/abp.2014_1916

  • Krasnyanski SF, Sandhu J, Domier LL, Buetow DE, Korban SS (2001) Effect of an enhanced CaMV 35S promoter and a fruit-specific promoter on uida gene expression in transgenic tomato plants. In Vitro Cell Dev Biol - Plant 37:427–433. https://doi.org/10.1007/s11627-001-0075-1

  • Lavor EM, Leal AEBP, Fernandes AWC, Ribeiro FPRA, Barbosa JM, Gama E, Silva M, Teles RBA, Oliveira LFDS, Silva JC, Rolim LA, Menezes IRA, Almeida JRGDS (2018) Ethanolic extract of the aerial parts of Passiflora cincinnata Mast. (Passifloraceae) reduces nociceptive and inflammatory events in mice. Phytomedicine 47:58–68. https://doi.org/10.1016/j.phymed.2018.04.052

    Article  PubMed  Google Scholar 

  • Leal AEBP, Oliveira AP, Santos RFD, Soares JMD, Lavor EMD, Pontes MC, Lima JT, Santos ADDC, Tomaz JC, Oliveira GG, Neto FC, Lopes NP, Rolim LA, Almeida JRGDS (2018) Determination of phenolic compounds, in vitro antioxidant activity and characterization of secondary metabolites in different parts of Passiflora cincinnata by HPLC-DAD-MS/MS analysis. Nat Prod Res 34:995–1001. https://doi.org/10.1080/14786419.2018.1548445

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24:1–16. https://doi.org/10.1016/j.biotechadv.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  • Manders SG, Otoni WC, d’UtraVaz FB, Davey MR, Power JB (1994) Transformation of passion fruit (Passiflora edulis f. flavicarpa Degener) using Agrobacterium tumefaciens. Plant Cell Rep 13:234–238

    Article  Google Scholar 

  • Monteiro-Hara ACBA, Jadão AS, Mendes BM, Rezende JAM, Trevisan F, Mello APOA, Vieira MLC, Meletti LMM, Piedade SMS (2011) Genetic transformation of passionflower and evaluation of R1and R2 generations for resistance to Cowpea aphid borne mosaic virus. Plant Dis 95:1021–1025. https://doi.org/10.1094/PDIS-12-10-0873

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oliveira JC, Ruggiero C (2005) Passionfruit species with agronomic potential. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding, 1st edn. Embrapa Cerrados, Planaltina, pp 142–158 (in Portuguese)

  • Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395. https://doi.org/10.1007/s00299-008-0646-2

    Article  CAS  PubMed  Google Scholar 

  • Otoni WC, Blackhall N, d’UtraVaz FB, Casali VWD, Power JB, Davey MR (1995) Somatic hybridization between Passiflora species, Passiflora edulis f. flavicarpa Deg. and P. incarnata L. J Exp Bot 21:10–14

  • Otoni WC, Paim Pinto DL, Rocha DI, Vieira LM, Dias LLC, Silva ML, Silva CV, Lani ERG, Silva LC, Tanaka FAO (2013) Organogenesis and somatic embryogenesis in Passionfruit (Passiflora sp.). In: Slam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and gene expression, 1st edn. Narosa Publishing House, New Delhi, pp 1–17

    Google Scholar 

  • Paim Pinto DL (2009) Somatic embryogenesis, SERK gene expression, and transient expression of gus gene by means of SAAT in Passiflora sp. MS Dissertation, Universidade Federal de Viçosa, Viçosa, MG, Brazil (in Portuguese)

  • Quoirin M, Winkler LM, Ayub R (2002) Agrobacterium tumefaciens-mediated transformation of yellow passion fruit Passiflora edulis f. flavicarpa with the CME-ACOL gene. In: XXVI International Horticultural Congress: citrus and other subtropical and tropical fruit crops: issues, advances and 632, pp 243–248. https://doi.org/10.17660/ActaHortic.2004.632.30

    Chapter  Google Scholar 

  • Reis LB, Silva ML, Lima ABP, Oliveira MLP, Paim Pinto DL, Lani ERG, Otoni WC (2007) Agrobacterium rhizogenes-mediated transformation of passion fruit species: Passiflora cincinnata and P. edulis flavicarpa. Acta Hortic 738:425–431

    Article  Google Scholar 

  • Rischitor P, Lievens A, Mazzara M (2016) Element-specific method for t35S-pCAMBIA detection using real-time PCR. Validation Report Qualitative Screening Method. JRC104515. Online Publication

  • Rocha DI, Batista DS, Faleiro FG, Rogalski M, Ribeiro LM, Mercadante-Simões MO, Yockteng R, Silva ML, Soares WS, Pinheiro MVM, Pacheco TG, Lopes AS, Viccini LF, Otoni WC (2020) Passion fruit: Passiflora spp. In: Litz RA, Pliego-Alfaro F, Hormaza JI (eds) Biotechnology of fruit and nut crops, 2nd edn. CABI, Wallingford, pp 381–408

    Chapter  Google Scholar 

  • Siebra ALA, Oliveira LR, Martins AO, Siebra DC, Albuquerque RS, Lemos ICS, Delmondes GA, Tintino SR, Figueredo FG, Costa JGM, Coutinho HDM, Menezes IRA, Felipe CFB, Kerntopf MR (2018) Potentiation of antibiotic activity by Passiflora cincinnata Mast. front of strains Staphylococcus aureus and Escherichia coli. Saudi J Biol Sci 25:37–43. https://doi.org/10.1016/j.sjbs.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  • Silva ML, Paim Pinto DL, Guerra MP, Floh EIS, Bruckner CH, Otoni WC (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from zygotic embryos. Plant Cell Tiss Org Cult 99:47–54

  • Stenzel N, Carvalho SD (1992) Comportamento do maracujazeiro-amarelo (Passiflora edulis Sims f. flavicarpa Deg.) enxertado sobre diferentes porta-enxertos. Rev Bras Frutic 14:183–186

    Google Scholar 

  • Tepfer D, Tempé J (1981) Production d’agropine par des raciness formées sous l’action d’Agrobacterium rhizogenes, souche A4. CR Acad Sci Paris 292:153–156

    CAS  Google Scholar 

  • Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meletti LMM, Rezende JA (2006) Resistance to Passion fruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Dis 90:1026–1030. https://doi.org/10.1094/PD-90-1026

    Article  CAS  PubMed  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max). Transgenic Res 17:482–488

    Google Scholar 

  • Trigiano RN, Gray DJ, Conger BV, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylis glomerata. Bot Gaz 150:72–77

    Article  Google Scholar 

  • Vieira MLC, Carneiro MS (2004) Passiflora spp. passionfruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Oxford, pp 435–453

    Google Scholar 

  • Vieira LM, Rocha DI, Taquetti MF, Silva LC, Campos JMS, Viccini LF, Otoni WC (2014) In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cell Dev Biol - Plant 50:738–745

Download references

Acknowledgments

Editage (www.editage.com) is also acknowledged for English language editing.

Funding

The authors would like to thank the Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT; Cuiabá, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil; Grant 459.529/2014-5 to WCO; Grant 420913/2018-1 to DIR), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, Brazil, Grants CBB-APQ-01131-15 and CBB-BPD-00020-16 to WCO and DSB).

Author information

Authors and Affiliations

Authors

Contributions

MLS, DLPP, and WCO designed this study. MLS and DLPP performed in vitro culture and transformation experiments. FCMG, ABP, and AABR performed molecular biology analyses. MLS, AABR, DSB, DIR, IFC, WK, and WCO wrote the article with input from all other authors. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Maurecilne Lemes da Silva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Harold Trick

Supporting Information

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.L., Paim Pinto, D.L., Passos, A.B. et al. Novel and efficient transformation of wild passion fruit (Passiflora cincinnata Mast.) using sonication-assisted Agrobacterium-mediated transformation. In Vitro Cell.Dev.Biol.-Plant 57, 380–386 (2021). https://doi.org/10.1007/s11627-020-10134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10134-4

Keywords

Navigation