Skip to main content
Log in

Protonema suspension cultures of the medicinal moss Polytrichum juniperinum

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The moss Polytrichum juniperinum was widely used by native North Americans and in traditional Chinese medicine to treat several illnesses including burns, wounds, bleeding, fever, kidney stones, and gallstones. This paper reports the efficient establishment of a protonema suspension culture of this moss and evaluation of key factors such as culture medium, trophic condition, initial pH, and inoculum size for increasing biomass production, which has scarcely been studied in this type of biological system. No significant differences were found for the maximum specific growth rate (μmax~0.09 d−1) and the total phenolic content between MS, Knop, and PPNH4 media, although an effect on tissue differentiation was observed. Growth rate in a mixotrophic condition was (μmax 0.27 d−1) three times greater than in autotrophic and heterotrophic conditions, reaching high cell densities (~11 g DW L−1). Moreover, simple sugars were secreted into the medium during the growth phase. P. juniperinum protonema cultures tolerated a wide initial medium pH range (4.5–8). The tissue growth index significantly decreased from ~7.7 to 1.9 with increased inoculum size (45–300 mg DW L−1) under photoautotrophic conditions. Similar responses were obtained under mixotrophic conditions with different sucrose concentrations (15–45 g L−1), but no responses to sucrose concentration and inoculum sizes were seen under heterotrophic growth conditions. Finally, this high cell density culture of P. juniperinum is suitable for further studies aimed at exploring and establishing a production platform for high-value secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2:875–877

    Article  CAS  PubMed  Google Scholar 

  • Addinsoft (2015). XLSTAT 2015, Data analysis and statistics software for Microsoft Excel

  • Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asakawa Y (2011) Bryophytes: chemical diversity, synthesis and biotechnology. A review. Flavour Fragr J 26:318–320

    CAS  Google Scholar 

  • Ashton NW, Grimsley NH, Cove DJ (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144:427–435

    Article  CAS  PubMed  Google Scholar 

  • Beike A, Spagnuolo V, Lüth V, et al. (2015) Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research. Plant cell. Tissue Organ Cult 120:1037–1049

    Article  Google Scholar 

  • Bricker TM, Bell AJ, Tran L, Frankel LK, Theg SM (2014) Photoheterotrophic growth of Physcomitrella patens. Planta 239:605–613

    Article  CAS  PubMed  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzym Microb Technol 34:461–465

    Article  CAS  Google Scholar 

  • Churchill S, Linares E (1995) Prodromus Bryologiae Novo-Granatensis: introducción a la flora de musgos de Colombia, vol parte 1. Instituto de Ciencias Naturales--Museo de Historia Natural Bogotá, Colombia

    Google Scholar 

  • Flowers S (1957) Ethnobryology of the Gosuite Indians of Utah. Bryologist 60:11–14

    Article  Google Scholar 

  • Goode JA, Stead AD, Duckett JG (1993) Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can J Bot 71:1510–1519

    Article  Google Scholar 

  • Hart JA (1981) The ethnobotany of the Northern Cheyenne Indians of Montana. J Ethnopharmacol 4:1–55

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohe A, Decker E, Gorr G, Schween G, Reski R (2002) Tight control of growth and cell differentiation in photoautotrophically growing moss (Physcomitrella patens) bioreactor cultures. Plant Cell Rep 20:1135–1140

    Article  CAS  Google Scholar 

  • Ikram N, Zhan X, Pan X, King B, Simonsen H (2015) Stable heterologous expression of biologically active terpenoids in green plant cells. Front Plant Sci 6:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajani AA, Moghim S, Mofid MR (2012) Optimization of the basal medium for improving production and secretion of taxanes from suspension cell culture of Taxus baccata L. Daru 20:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508

    Article  PubMed  PubMed Central  Google Scholar 

  • Krzaczkowski L, Wright M, Rebérioux D, Massiot G, Etiévant C, Gairin JE (2009) Pharmacological screening of bryophyte extracts that inhibit growth and induce abnormal phenotypes in human HeLa cancer cells. Fundam Clin Pharmacol 23:473–482

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yan HF, Cao T, Ge XJ (2010) Evaluation of 10 plant barcodes in Bryophyta (mosses). J Syst Evol 48:36–46

    Article  CAS  Google Scholar 

  • Maksimova IV, Bratkovskaia LB, Plekhanov SE (2004) Extracellular carbohydrates and polysaccharides of the algae Chlorella pyrenoidosa Chick S–39. Izv Akad Nauk Ser Biol:217–224

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy H, Lee E, Paek K (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  • Orozco-Sanchez F, Sepúlveda-Jiménez G, Trejo-Tapia G, Zamilpa A, Rodríguez-Monroy M (2011) Oxygen limitations to grow Azadirachta indica cell culture in shake flasks. Rev Mex Ing Quim 10:343–352

    CAS  Google Scholar 

  • Pant GP (1998) Medicinal uses of bryophytes. In: Chopra RN (ed) Topics in Bryology. Allied Publishers Limited, New Delhi, pp. 112–124

    Google Scholar 

  • Perner-Nochta I, Lucumi A, Posten C (2007) Photoautotrophic cell and tissue culture in a tubular photobioreactor. Eng Life Sci 7:127–135

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org

    Google Scholar 

  • Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15

    Article  CAS  Google Scholar 

  • Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    Article  CAS  PubMed  Google Scholar 

  • Reski R, Parsons J, Decker EL (2015) Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol J 13:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabovljevic A, Sabovljevic M, Jockovic N (2009) In vitro culture and secondary metabolite isolation in bryophytes. Methods Mol Biol 547:117–128

    Article  CAS  PubMed  Google Scholar 

  • Savaroglu F, Ilhan S, Filik-Iscen C (2011) An evaluation of the antimicrobial activity of some Turkish mosses. J Med Plants Res 5:3286–3292

    CAS  Google Scholar 

  • Wang J, Han D, Sommerfeld M, Lu C, Hu Q (2013) Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J Appl Phycol 25:253–260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Department (DIME) of the Universidad Nacional de Colombia in Medellin (Hermes project 21743). The authors are thankful to Margarita Escobar Acosta from the Universidad de Antioquia for aiding the species taxonomic identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Arias-Zabala.

Additional information

Editor: Boachun Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Molina, N., Villalobos-López, M.Á. & Arias-Zabala, M. Protonema suspension cultures of the medicinal moss Polytrichum juniperinum . In Vitro Cell.Dev.Biol.-Plant 52, 419–426 (2016). https://doi.org/10.1007/s11627-016-9783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-016-9783-4

Keywords

Navigation