Skip to main content
Log in

In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the repair effects of chondrocytes that were cultured in vitro on osteoarthritis (OA). Chondrocytes were isolated from fetal rabbits and cultured in Biosilon microcarriers. Sixty rabbits were randomly divided into three groups equally (blank group, model group, treatment group). The rabbit knee OA model was established by inducing papain. Rabbits in the treatment group were injected with the chondrocytes that were cultured in vitro. Hematoxylin-eosin (HE) staining and gross morphologic observation were conducted. Expression level of cytokines such as IL-1bβ, IL-6, and TNF-α in cartilage synovial cells was also analyzed by an ELISA assay. The cultured chondrocyte was validated by a positive stain of type II collagen and vimentin by immunofluorescence. Compared to the model group, the articular cartilage of the rabbit knee in the treatment group showed a normal color, smooth surface, and none of malacia and coloboma. HE staining indicated that the articular surface of the treatment group tended to be smooth and flat; the matrix stained tinge and the cartilage destruction and fiber hyperplasia of the synovia were lightened. The expression levels of IL-1bβ, IL-6, and TNF-α also declined in the treatment group. OA symptoms were improved by treating with chondrocytes. In summary, the animal experiment in the present study indicated that chondrocyte injection played an active effect on renovation of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Almqvist KF, Dhollander AA, Verdonk PC, Forsyth R, Verdonk R, Verbruggen G (2009) Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 37:1920–1929

    Article  PubMed  Google Scholar 

  • Bartlett W, Skinner J, Gooding C, Carrington R, Flanagan A, Briggs T, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br Vol 87:640–645

    Article  CAS  Google Scholar 

  • Bentley G, Biant L, Carrington R, Akmal M, Goldberg A, Williams A, Skinner J, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br Vol 85:223–230

    Article  CAS  Google Scholar 

  • Beris AE, Lykissas MG, Kostas-Agnantis I, Manoudis GN (2012) Treatment of full-thickness chondral defects of the knee with autologous chondrocyte implantation a functional evaluation with long-term follow-up. Am J Sports Med 40:562–567

    Article  PubMed  Google Scholar 

  • Buckwalter J, Mankin H (2004) Articular cartilage repair and transplantation. Arthritis Rheum 41:1331–1342

    Article  Google Scholar 

  • Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G, Almqvist KF (2012) Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 40:75–82

    Article  PubMed  Google Scholar 

  • Evans C, Ghivizzani S, Robbins P (2009) Progress and prospects: genetic treatments for disorders of bones and joints. Gene Ther 16:944–952

    Article  CAS  PubMed  Google Scholar 

  • Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (2005) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30:914–918

    Article  Google Scholar 

  • Forsey RW, Fisher J, Thompson J, Stone MH, Bell C, Ingham E (2006) The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials 27:4581–4590

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB (1999) The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 40:1–11

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43:1916–1926

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 4:269–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gross AE (2002) Repair of cartilage defects in the knee. J Knee Surg 15:167

    PubMed  Google Scholar 

  • Heidari M, Naghi Tahmasebi M, Etemad S, Salehkhou S, Heidari-Vala H, Akhondi MM (2011) In vitro human chondrocyte culture; a modified protocol. Middle-East J Sci Res 9:102–109

    CAS  Google Scholar 

  • Karataglis D, Green M, Learmonth D (2006) Autologous osteochondral transplantation for the treatment of chondral defects of the knee. Knee 13:32–35

    Article  CAS  PubMed  Google Scholar 

  • Kavas A, Cagatay ST, Banerjee S, Keskin D, Tezcaner A (2013) Potential of raloxifene in reversing osteoarthritis-like alterations in rat chondrocytes: an in vitro model study. J Biosci 38:135–147

    Article  CAS  PubMed  Google Scholar 

  • Klein GR, Vaccaro AR, Albert TJ, Schweitzer M, Deely D, Karasick D, Cotler JM (1999) Efficacy of magnetic resonance imaging in the evaluation of posterior cervical spine fractures. Spine 24:771–774

    Article  CAS  PubMed  Google Scholar 

  • Lauche R, Cramer H, Langhorst J, Dobos G (2013) A systematic review and meta-analysis of medical leech therapy for osteoarthritis of the knee. Clin J Pain 26:26

    Google Scholar 

  • Lo G, Hunter D, Nevitt M, Lynch J, McAlindon T (2009) Strong association of MRI meniscal derangement and bone marrow lesions in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil 17:743–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeser RF (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 54:1357–1360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahmoudifar N, Doran PM (2006) Effect of seeding and bioreactor culture conditions on the development of human tissue-engineered cartilage. Tissue Eng 12:1675–1685

    Article  CAS  PubMed  Google Scholar 

  • Malda J, Van Blitterswijk C, Grojec M, Martens D, Tramper J, Riesle J (2003) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9:939–948

    Article  CAS  PubMed  Google Scholar 

  • Mayan MD, Carpintero-Fernandez P, Gago-Fuentes R, Martinez-de-Ilarduya O, Wang H-Z, Valiunas V, Brink P, Blanco FJ (2013) Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. Am J Pathol 182(4):1337–1346

  • Mithöfer K, Peterson L, Mandelbaum BR, Minas T (2005) Articular cartilage repair in soccer players with autologous chondrocyte transplantation functional outcome and return to competition. Am J Sports Med 33:1639–1646

    Article  PubMed  Google Scholar 

  • Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Musumeci G (2013) The role of aquaporin 1 in knee osteoarthritis: a contemporary review. Cell Mol Mech 1:2–6

    Google Scholar 

  • Musumeci G, Loreto C, Carnazza ML, Strehin I, Elisseeff J (2011a) OA cartilage derived chondrocytes encapsulated in poly(ethylene glycol) diacrylate (PEGDA) for the evaluation of cartilage restoration and apoptosis in an in vitro model. Histol Histopathol 26:1265–1278

    CAS  PubMed  Google Scholar 

  • Musumeci G, Loreto C, Carnazza M, Coppolino F, Cardile V, Leonardi R (2011b) Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol) diacrylate scaffold. Eur J Histochem: EJH 55

  • Musumeci G, Furno DL, Loreto C, Giuffrida R, Caggia S, Leonardi R, Cardile V (2011c) Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin. Exp Biol Med 236:1333–1341

    Article  CAS  Google Scholar 

  • Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S, Carnazza ML, Trovato FM, Pichler K, Weinberg AM (2012) The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab 31(3):274–284

  • Musumeci G, Carnazza ML, Loreto C, Leonardi R, Loreto C (2012b) β-Defensin-4 (HBD-4) is expressed in chondrocytes derived from normal and osteoarthritic cartilage encapsulated in PEGDA scaffold. Acta Histochem 114:805–812

    Article  CAS  PubMed  Google Scholar 

  • Musumeci G, Loreto C, Castorina S, Imbesi R, Leonardi R, Castrogiovanni P (2013a) Current concepts in the treatment of cartilage damage. A review. Ital J Anat Embryol 118:189–203

    Google Scholar 

  • Musumeci G, Loreto C, Castorina S, Imbesi R, Leonardi R, Castrogiovanni P (2013b) New perspectives in the treatment of cartilage damage. Poly (ethylene glycol) diacrylate (PEGDA) scaffold. A review. Ital J Anat Embryol 118:204–210

    Google Scholar 

  • Naraoka T, Ishibashi Y, Tsuda E, Yamamoto Y, Kusumi T, Toh S (2013) Periodic knee injections of collagen tripeptide delay cartilage degeneration in rabbit experimental osteoarthritis. Arthritis Res Ther 15:R32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson L, Minas T, Brittberg M, Lindahl A (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation results at two to ten years. J Bone Joint Surg 85:17–24

    Article  PubMed  Google Scholar 

  • Roemer F, Guermazi A, Hunter D, Niu J, Zhang Y, Englund M, Javaid M, Lynch J, Mohr A, Torner J (2009) The association of meniscal damage with joint effusion in persons without radiographic osteoarthritis: the Framingham and MOST osteoarthritis studies. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 17:748

    CAS  Google Scholar 

  • Röhner E, Detert J, Kolar P, Hocke A, N’Guessan P, Matziolis G, Kanitz V, Bernimoulin J, Kielbassa A, Burmester G (2010) Induced apoptosis of chondrocytes by Porphyromonas gingivalis as a possible pathway for cartilage loss in rheumatoid arthritis. Calcif Tissue Int 87:333–340

    Article  PubMed  Google Scholar 

  • Schrobback K (2010) In vitro cultivation of adult human chondrocytes: importance of culture system, oxygen and zonal differences. Queensland University of Technology. http://eprints.qut.edu.au/33227/1/Karsten_Schrobback_Thesis.pdf

  • Schroeppel J, Crist J, Anderson H, Wang J (2011) Molecular regulation of articular chondrocyte function and its significance in osteoarthritis. Histol Histopathol 26:377

    CAS  PubMed  Google Scholar 

  • Surrao DC, Khan AA, McGregor AJ, Amsden BG, Waldman SD (2011) Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro? Tissue Eng A 17:1959–1967

    Article  CAS  Google Scholar 

  • Viste A, Piperno M, Desmarchelier R, Grosclaude S, Moyen B, Fessy MH (2012) Autologous chondrocyte implantation for traumatic full-thickness cartilage defects of the knee in 14 patients: 6-year functional outcomes. Orthop Traumatol Surg Res 98:737–743

    Article  CAS  PubMed  Google Scholar 

  • Webb GR, Westacott CI, Elson CJ (1997) Chondrocyte tumor necrosis factor receptors and focal loss of cartilage in osteoarthritis. Osteoarthr Cartil 5:427–437

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ma G, Yao Y, Qian H, Li W, Chen X, Jiang W, Zheng R (2012) Olmesartan attenuates the impairment of endothelial cells induced by oxidized low density lipoprotein through downregulating expression of LOX-1. Int J Mol Sci 13:1512–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhijun H, Bo H, Dezhi T, Youwei Z, Shiwei W, Wang Y (2010) Isolation, culture and morphological characteristics of rabbit articular chondrocyte. J Clin Rehabilitative Tissue Eng Res 14:8555–8558

    Google Scholar 

  • Zupan J, Komadina R, Marc J (2012) The relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human osteoporotic and osteoarthritic bone tissues. J Biomed Sci 19:28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochemia Medica 23:43–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (no. C05030324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Zhang.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, C. In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation. In Vitro Cell.Dev.Biol.-Animal 50, 623–629 (2014). https://doi.org/10.1007/s11626-014-9742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9742-5

Keywords

Navigation