Skip to main content
Log in

The NC-proximal average for multiple functions

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The NC-proximal average is a parametrized function used to continuously transform one proper, lsc, prox-bounded function into another. Until now it has been defined for two functions. The purpose of this article is to redefine it so that any finite number of functions may be used. The layout generally follows that of Hare (SIAM J Optim 20(2):650–666, 2009), extending those results to the more general case and in some instances giving alternate proofs by using techniques developed after the publication of that paper. We conclude with an example examining the discontinuity of the minimizers of the NC-proximal average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bauschke, H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: basic theory. SIAM J. Optim. 19(2), 766–785 (2008). doi:10.1137/070687542

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke, H., Lucet, Y., Trienis, M.: How to transform one convex function continuously into another. SIAM Rev. 50(1), 115–132 (2008). doi:10.1137/060664513

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H., Lucet, Y., Wang, X.: Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators. SIAM J. Control Optim. 46(6), 2031–2051 (2007). doi:10.1137/060675794

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauschke, H., Moffat, S., Wang, X.: The resolvent average for positive semidefinite matrices. Linear Algebr. Appl. 432(7), 1757–1771 (2010). doi:10.1016/j.laa.2009.11.028

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H., Wang, X.: The Kernel average for two convex functions and its application to the extension and representation of monotone operators. Trans. Am. Math. Soc. 361(11), 5947–5965 (2009). doi:10.1090/S0002-9947-09-04698-4

    Google Scholar 

  6. Bauschke, H., Wang, X., Yao, L.: Autoconjugate representers for linear monotone operators. Math. Program. 123(1, Ser. B), 5–24 (2010). doi:10.1007/s10107-009-0319-0

    Article  MATH  MathSciNet  Google Scholar 

  7. Gardiner, B., Lucet, Y.: Convex hull algorithms for piecewise linear-quadratic functions in computational convex analysis. Set-Valued Var. Anal. 18(3–4), 467–482 (2010). doi:10.1007/s11228-010-0157-5

    Article  MATH  MathSciNet  Google Scholar 

  8. Goebel, R., Hare, W., Wang, X.: The optimal value and optimal solutions of the proximal average of convex functions. Nonlinear Anal. 75(3), 1290–1304 (2012). doi:10.1016/j.na.2011.06.017

    Article  MATH  MathSciNet  Google Scholar 

  9. Goebel, R.: The proximal average for saddle functions and its symmetry properties with respect to partial and saddle conjugacy. J. Nonlinear Convex Anal. 11(1), 1–11 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Hare, W., Planiden, C.: Parametrically prox-regular functions. Submitted to J. Convex Anal. (2012)

  11. Hare, W.L.: A proximal average for nonconvex functions: a proximal stability perspective. SIAM J. Optim. 20(2), 650–666 (2009). doi:10.1137/07070913X

    Article  MATH  MathSciNet  Google Scholar 

  12. Hare, W.L., Poliquin, R.A.: Prox-regularity and stability of the proximal mapping. J. Convex Anal. 14(3), 589–606 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Johnstone, J., Koch, V., Lucet, Y.: Convexity of the proximal average. J. Optim. Theory Appl. 148(1), 107–124 (2011). doi:10.1007/s10957-010-9747-5

    Article  MATH  MathSciNet  Google Scholar 

  14. Kum, S.: Resolvent average on second-order cone. Taiwan. J. Math. 15(6), 2733–2750 (2011)

    MATH  MathSciNet  Google Scholar 

  15. Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications (reprint of mr2496900). SIAM Rev. 52(3), 505–542 (2010). doi:10.1137/100788458

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar, R., Wets, R.B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 317. Springer, Berlin (1998). doi:10.1007/978-3-642-02431-3

    Google Scholar 

  17. Wang, X.: Self-dual regularization of monotone operators via the resolvent average. SIAM J. Optim. 21(2), 438–462 (2011). doi:10.1137/100795942

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, X., Bauschke, H.: Compositions and averages of two resolvents: relative geometry of fixed points sets and a partial answer to a question by C. Byrne. Nonlinear Anal. 74(13), 4550–4572 (2011). doi:10.1016/j.na.2011.04.024

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hare.

Additional information

Research by these authors was supported by UBC UGF and by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, W., Planiden, C. The NC-proximal average for multiple functions. Optim Lett 8, 849–860 (2014). https://doi.org/10.1007/s11590-013-0641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-013-0641-6

Keywords

Navigation