Skip to main content
Log in

Spiral-generation mechanism in the two-dimensional FitzHugh-Nagumo system

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Spiral waves are a mathematical concept that organizes spatio-temporal dynamics in dissipative, spatially extended biological, physical and chemical systems. They support a variety of important phenomena, such as re-entrant cardiac arrhythmias and spatial patterns in chemical reactions. In this paper we consider a two-dimensional (2D) disturbance wave that can make the pulse wave travel around the disturbance and generate a self-sustaining spiral wave. The use of a region temporarily refractory as a disturbance in format wave is a novel mechanism for generating activity in spiral shape. In addition, it is robust for a wide variety of refractory areas and geometry shapes. This situation models the appearance of abnormal electrical activity in the heart, where the disturbance is a cardiac tissue in damage. We present a Finite Element Method (FEM) scheme for the two-dimensional FitzHugh-Nagumo (FHN) system to simulate the spiral-generation mechanism in cardiac tissue. This scheme is based on the semi implicit Eyres algorithm and we present some numerical results to demonstrate the effectiveness and usefulness of the present technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aliev, R.R., Panilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Frac. 7, 293–301 (1996)

    Article  Google Scholar 

  2. Alonso, S., Bär, M., Echebarria, B.: Nonlinear physics of electrical wave propagation in the heart: a review. Rep. Prog. Phys. 79(9), 096601 (2016)

    Article  Google Scholar 

  3. Arrieta, J.M., Carvalho, A.N., Rodríguez-Bernal, A.: Parabolic problems with nonlinear boundary conditions and critical nonlinearities. J. Differ. Equ. 156(2), 376–406 (1999)

    Article  MathSciNet  Google Scholar 

  4. Arrieta, J.M., Carvalho, A.N., Rodríguez-Bernal, A.: Attractors for Parabolic Problems with Nonlinear Boundary Condition. Unif. Bounds, Commun. Partial Differ. Equ. 25(1–2), 1–37 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Bendoukha, S., Abdelmalek, S., Kirane, M.: The global existence and asymptotic stability of solutions for a reaction-diffusion system. Nonlinear Anal. Real World Appl. 53, 103052 (2020)

    Article  MathSciNet  Google Scholar 

  6. Biktasheva, I., Holden, A., Biktashev, V.: Localization of response functions of spiral waves in the FitzHugh-Nagumo system. Int. J. Bifurcation and Chaos 16, 1547–1555 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bourgault, Y., Ethier, M., LeBlanc, V.G.: Simulation of Electrophysiological Waves with an Unstructured Finite Element Method. ESAIM: M2AN, 37 4, 649–661 (2003)

    Article  MathSciNet  Google Scholar 

  8. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cai, L., Sun, Y., Jing, F., Li, Y.: A fully discrtet implicit-explicit fnite element method for solving the ftzhugh-nagumo model. J. Comput. Math. 38(3), 469–486 (2020)

    Article  MathSciNet  Google Scholar 

  10. Comtois, P., Vinet, A.: Multistability of reentrant rhythms in an ionic model of a two-dimensional annulus of cardiac tissue. Phys. Rev. E 72, 051927 (2005)

    Article  Google Scholar 

  11. Courtemanche, M., Winfree, A.T.: Re-entrant rotating waves in a Beeler-Reuter based model of two-dimensional cardiac electrical activity. Int. J. Bifurcation Chaos 1, 431–444 (1991)

    Article  MathSciNet  Google Scholar 

  12. Fenton, F.H., Karma, A.: Vortex dynamics in three dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998)

    Article  Google Scholar 

  13. Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002)

    Article  Google Scholar 

  14. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1–2, 445–466 (1961)

    Article  Google Scholar 

  15. Ganesan, P., Sterling, M., Ladavich, S., Ghoraani, B.: Computer-aided Technologies - Applications in Engineering and Medicine. Open access peer-reviewed Edited Volume, Chapter 5, 91–118 (2016)

  16. Glass, L., Josephson, M.E.: Resetting and annihilation of reentrant abnormally rapid heartbeat. Phys. Rev. Lett. 75(10), 2059–2062 (1995)

    Article  Google Scholar 

  17. Glass, L., Nagai, Y., Hall, K., Talajic, M., Nattel, S.: Predicting the entrainment of reentrant cardiac waves using phase resetting curves. Phys. Rev. E 65, 021908 (2002)

    Article  Google Scholar 

  18. Göktepe, S., Kuhl, E.: Computational modeling of cardiac electrophysiology: A novel finite element approach. Int. J. Numer. Meth. Engng 79(2), 156–178 (2009)

    Article  MathSciNet  Google Scholar 

  19. Goldstein, R. E., Muraki, D. J., Petrich, D. M.: Interface proliferation and the growth of labyrinths in a reaction-diffusion system. Phys. Rev. E 53(4), 3933–3957 (1996)

  20. Hastings, S.P.: Some mathematical problems from neurobiology. Amer. Math. Monthly 82, 881–895 (1975)

    Article  MathSciNet  Google Scholar 

  21. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3-4), 251–265 (2012)

  22. Henry, D.: Geometric theory of semilinear parabolic equations. In: Lecture Notes in Mathematics, vol. 840. Springer-Verlag, Berlin-New York (1981)

  23. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–44 (1952)

    Article  Google Scholar 

  24. Kamjoo, K., Uchida, R., Ikeda, T., Fishbein, M.C., Garfinkel, A., Weiss, J.N., Karagueuzian, H.S., Chen, P.: Importance of location and timing of electrical stimuli in terminating sustained functional reentry in isolated swine ventricular tissues. Circulation 96, 2048–2060 (1997)

    Article  Google Scholar 

  25. Keener, J.P., Tyson, J.J.: The dynamics of scroll waves in excitable media. SIAM Rev. 34, 1–39 (1992)

    Article  MathSciNet  Google Scholar 

  26. Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, Q.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model, In: Proceedings of the 16th Biennial Computational Techniques and Applications Conferenc, vol. 54, pp. C608-C629 (2013)

  27. Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11(10), 1221–1232 (2013)

    Google Scholar 

  28. Mesin, L.: Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity. Chaos, Solitons Fractals 45, 1220–1230 (2012)

    Article  MathSciNet  Google Scholar 

  29. Mesin, L., Ambrosi, D.: Spiral waves on a contractile tissue. Eur. Phys. J. Plus 126, 21 (2011)

    Article  Google Scholar 

  30. Nagumo, J.S., Arimoto, S., Yoshizawa, Y.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio. Eng. 50, 2061–2070 (1962)

    Google Scholar 

  31. Panfilov, A.V.: Spiral Breakup in an Array of Coupled Cells: The Role of the Intercellular Conductance. Phys. Rev. Lett. 88, 118101 (2002)

    Article  Google Scholar 

  32. Panfilov, A., Hogeweg, P.: Spiral breakup in a modified FitzHugh-Nagumo model. Phys. Lett. A 176, 295–299 (1993)

    Article  Google Scholar 

  33. Panfilov, A.V., Keldermann, R.H., Nash, M.P.: Drift and breakup of spiral waves in reaction-diffusion-mechanics systems Proc. Natl. Acad. Sci. USA 104, 7922–7926 (2007)

    Article  Google Scholar 

  34. Paton, K. M.: A study of wave propagation in the FitzHugh-Nagumo System, Master thesis, The University of British Columbia, Vancouver (2011)

  35. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 5. Springer, Berlin (1992)

    MATH  Google Scholar 

  36. Rogers, J.M.: Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Chaos 12, 779–787 (2002)

    Article  Google Scholar 

  37. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8), 743–757 (1994)

    Article  Google Scholar 

  38. Rogers, J.M., McCulloch, A.D.: Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J. Cardiovasc. Electrophysiol. 5(6), 496–509 (1994)

    Article  Google Scholar 

  39. Sandstede, B., Scheel, A.: Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145, 233–277 (2000)

    Article  MathSciNet  Google Scholar 

  40. Shajahan, T.K., Sinha, S., Pandit, R.: Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue. Phys. Rev. E 75, 011929 (2007)

    Article  MathSciNet  Google Scholar 

  41. Sweers, G., Troy, W.C.: On the bifurcation curve for an elliptic system of FitzHugh- Nagumo type. Phys. D 177, 1–22 (2003)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y., Cai, L., Luo, X., Ying, W., Gao, H.: Simulation of action potential propagation based on the ghost structure method. Sci. Rep. 9, 10927 (2019)

    Article  Google Scholar 

  43. Weise, L.D., Nash, M.P., Panfilov, A.V.: A Discrete Model to Study Reaction-Diffusion-Mechanics Systems. PLoS ONE 6(7), e21934 (2011)

    Article  Google Scholar 

  44. Xu, B., Binczak, S., Jacquir, S., Pont, O., Yahia, H.: Parameters Analysis of FitzHugh-Nagumo Model for a Reliable Simulations, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4334-4337 (2014)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her comments and suggestions which improved an earlier version of this work.

C. E.Rubio-Mercedes thanks to the Carolina Foundation for the financial support for the academic exchange at the University of Cádiz, Spain. G. Lozada-Cruz thanks to the Fundação de Amparo à Pesquisa do Estado de São Paulo, (FAPESP), grant 2015/24095-6, for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Rubio-Mercedes.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Mercedes, C.E., Lozada-Cruz, G. & Gallego, F.O. Spiral-generation mechanism in the two-dimensional FitzHugh-Nagumo system. Ricerche mat (2022). https://doi.org/10.1007/s11587-022-00725-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-022-00725-1

Keywords

Mathematics Subject Classification

Navigation