Skip to main content
Log in

Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report a study on quasi-solid-state–dye-sensitized solar cells (QSS–DSSCs) with polymer gel electrolytes (PGEs) that are composed of an organosiloxane hybrid polymer gel and imidazolium ionic liquid. The ionic diffusion coefficients of these PGEs are smaller than those of the pure ionic liquid, which may explain the observation of decreased cell performances in the DSSCs using these PGEs. However, from more detailed electrochemical impedance spectroscopy (EIS) studies, there is a strong evidence that the cell performance is also limited by inefficient charge transfer and charge transport inside the mesoporous TiO2 layer. This is indicated by the absence of transmission line characteristics in the observed Nyquist plots. The present experimental results then indicate that the lack of electrolyte penetration into the mesoporous TiO2 layer, due to the PGE rheology behavior caused by the siloxane-based polymer gel used here, is another crucial limiting factor for the photovoltaic performance of DSSCs using this kind of PGE. We consider that this kind of gel phase effect may be also observed in DSSCs using other types of gel electrolytes, including polyionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Lee HS, Kwon J, Kim DY, Song K, Oh SH, Cho J, Schubert EF, Park JH, Kim JK (2015) Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array. Sol Energy Mater Sol Cells 132:47–55

    Article  CAS  Google Scholar 

  3. Wei X, Liu J, Liu X (2015) Ultrafine dice-like anatase TiO2 for highly efficient dye-sensitized solar cells. Sol Energy Mater Sol Cells 134:133–139

    Article  CAS  Google Scholar 

  4. Wang J, Jin EM, Park J, Wang WL, Zhao XG, Gu HB (2012) Increases in solar conversion efficiencies of the ZrO2 nanofiber-doped TiO2 photoelectrode for dye-sensitized solar cells. Nanoscale Res Lett 7:98

    Article  Google Scholar 

  5. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Gratzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  6. Snaith HJ, Zakeeruddin SM, Wang Q, Péchy P, Grätzel M (2006) Dye-sensitized solar cells incorporating a “liquid” hole-transporting material. Nano Lett 6:2000–2003

    Article  CAS  Google Scholar 

  7. Wang P, Zakeeruddin SM, Moser JE, Humphry-Baker R, Grätzel M (2004) A solvent-free, SeCN/(SeCN)3 based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J Am Chem Soc 126:7164–7165

    Article  CAS  Google Scholar 

  8. Konno A, Kumara GRA, Kaneko S (2007) Solid-state solar cells sensitized with indoline dye. Chem Lett 36:716–717

    Article  CAS  Google Scholar 

  9. Li CT, Chang LY, Fan MS, Chen PY, Lin JJ, Ho KC, Lee CP (2015) New class of ionic liquids for dye-sensitized solar cells. In: Handy S (ed) Ionic liquids current state of the art. InTech, pp 655–677. doi:10.5772/59057

  10. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:1167–1175

    Article  CAS  Google Scholar 

  11. Meng X, Yu C, Song X, Liu Y, Liang S, Liu Z, Hao C, Qiu J (2015) Graphene Nanoribbons: nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv Energy Mater 5:1500180

    Article  Google Scholar 

  12. Meng X, Yu C, Lu B, Yang J, Qiu J (2016) Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy 22:59–69

    Article  CAS  Google Scholar 

  13. Yu C, Meng X, Song X, Liang S, Dong Q, Wang G, Hao C, Yang X, Ma T, Ajayan PM, Qiu J (2016) Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon 100:474–483

    Article  CAS  Google Scholar 

  14. Meng X, Yu C, Song X, Liu Z, Lu B, Hao C, Qiu J (2017) Rational design and fabrication of sulfur-doped porous graphene with enhanced performance as a counter electrode in dye-sensitized solar cells. J Mater Chem A 5:2280–2287

    Article  CAS  Google Scholar 

  15. Wang M, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2:385–389

    Article  CAS  Google Scholar 

  16. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132:16714–16724

    Article  CAS  Google Scholar 

  17. Daeneke T, Kwon TH, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215

    Article  CAS  Google Scholar 

  18. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 91:2655–2666

    Article  Google Scholar 

  19. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115:2136–2173

    Article  CAS  Google Scholar 

  20. Papageorgiou N, Athanassov Y, Armand M, Bonhote P, Pettersson H, Azam A, Grätzel M (1996) The performance and stability of ambient temperature molten salts for solar cell applications. J Electrochem Soc 143:3099–3108

    Article  CAS  Google Scholar 

  21. Yoon IN, Song H, Won J, Kang YS (2014) Shape dependence of SiO2 nanomaterials in a quasi-solid electrolyte for application in dye-sensitized solar cells. J Phys Chem C 118:3918–3924

    Article  CAS  Google Scholar 

  22. Sacco A, Lamberti A, Gerosa M, Bisio C, Gatti G, Carniato F, Shahzad N, Chiodoni A, Tresso E, Marchese L (2015) Toward quasi-solid state dye-sensitized solar cells: effect of γ-Al2O3 nanoparticle dispersion into liquid electrolyte. Sol Energy 111:125–134

    Article  CAS  Google Scholar 

  23. Wang P, Zakeeruddin SM, Comte P, Exnar I, Grätzel M (2003) Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125:1166–1167

    Article  CAS  Google Scholar 

  24. Rahman MYA, Ahmad A, Umar AA, Taslim R, Su’ait MS, Salleh MM (2014) Polymer electrolyte for photo electrochemical cell and dye-sensitized solar cell : a brief review. Ionics 20:1201–1205

    Article  CAS  Google Scholar 

  25. Su’ait MS, Rahman MYA, Ahmad A (2015) Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol Energy 115:452–470

    Article  Google Scholar 

  26. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  CAS  Google Scholar 

  27. Lee HS, Han CH, Sung YM, Sekhon SS, Kim KI (2011) Gel electrolyte based on UV-cured polyurethane for dye-sensitized solar cells. Curr Appl Phys 11:558–5162

    Article  Google Scholar 

  28. Jayaweera EN, Ranasinghe CSK, Kumara GRA, Wanninayake WMNMB, Senarathne KGC, Tennakone K, Rajapakse RMG, Ileperuma OA (2015) Novel method to improve performance of dye-sensitized solar cells based on quasi solid gel polymer electrolytes. Electrochim Acta 152:360–367

    Article  CAS  Google Scholar 

  29. Joseph J, Son KM, Vittal R, Lee W, Kim KJ (2006) Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte. Semicond Sci Technol 21:697–701

    Article  CAS  Google Scholar 

  30. Jung KH, Bae JY, Yun HG, Kang MG, Bae BS (2011) Novel ionic iodide-siloxane hybrid electrolyte for dye-sensitized solar cells. ACS Appl Mater Interfaces 3:293–298

    Article  CAS  Google Scholar 

  31. Lee WS, Kim DW, Lee C, Woo SI, Kang Y (2011) Ionic conductivity of anion receptor grafted siloxane polymers for solid polymer electrolytes. J Electrochem Sci Technol 2:26–31

    Article  CAS  Google Scholar 

  32. Bae JY, Lim DS, Yun HG, Kim M, Jin JH, Bae BS (2012) A quasi-solid-state dye-sensitized solar cell based on sol–gel derived in situ gelation of a siloxane hybrid electrolyte. RSC Adv 2:5524–5527

    Article  CAS  Google Scholar 

  33. De Gregorio GL, Gianuzzi R, Cipolla MP, Agosta R, Grisorio R, Capodilupo A, Suranna GP, Gigli G, Manca M (2014) Iodopropyl-branched polysiloxane gel electrolytes with improved ionic conductivity upon cross-linking. Chem Commun 50:1390413906

    Article  Google Scholar 

  34. Burjanadze M, Karatas Y, Kaskhedikar N, Kogel LM, Kloss S, Gentschev AC, Hiller MM, Müller RA, Stolina R, Vettikuzha P, Wiemhöfer HD (2010) Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes. J Phys Chem 224:1439–1473

    CAS  Google Scholar 

  35. Park JH, Choi KJ, Kim J, Kang YS, Lee SS (2007) Effect of molecular weight of oligomer on ionic diffusion in oligomer electrolytes and its implication for dye-sensitized solar cells. J Power Sources 173:1029–1033

    Article  CAS  Google Scholar 

  36. Kim JY, Kim TH, Kim DY, Park NG, Ahn KD (2008) Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. J Power Sources 175:692–697

  37. Yang CH, Ho WY, Yang HH, Hsueh ML (2010) Approaches to gel electrolytes in dye-sensitized solar cells using pyridinium molten salts. J Mater Chem 20:6080–6085

    Article  CAS  Google Scholar 

  38. Dong RX, Shen SY, Chen HW, Wang CC, Shih PT, Liu CT, Vittal R, Lin JJ, Ho KC (2013) A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells. J Mater Chem A 1:8471–8478

    Article  CAS  Google Scholar 

  39. Yusuf SNF, Aziz MF, Hassan HC, Bandara TMWJ, Mellander BE, Careem MA, Arof AK (2014) Phthaloylchitosan-based gel polymer electrolytes for efficient dye-sensitized solar cells J Chem Article ID 783023

  40. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci Rep 5:18056

    Article  CAS  Google Scholar 

  41. Seidalilir Z, Malekfar R, Wu HP, Shiu JW, Diau EWG (2015) High-performance and stable gel-state dye-sensitized solar cells using anodic tio2 nanotube arrays and polymer-based gel electrolytes. ACS Appl Mater Interfaces 7:12731–12739

    Article  CAS  Google Scholar 

  42. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  43. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  44. Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Gratzel M (2009) Electron transport and recombination in solid-state dye solar cell with Spiro-OMeTAD as hole conductor. J Am Chem Soc 131:558–562

    Article  CAS  Google Scholar 

  45. Anta J, Casanueva F, Oskam G (2006) A numerical model for charge transport and recombination in dye-sensitized solar cells. J Phys Chem B 110:5372–5378

    Article  CAS  Google Scholar 

  46. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J Am Chem Soc 130:13364–13372

    Article  CAS  Google Scholar 

  47. Manthina V, Correa Baena JP, Liu G, Agrios AG (2012) ZnO–TiO2 nanocomposite films for high light harvesting efficiency and fast electron transport in dye-sensitized solar cells. J Phys Chem C 116:23864–23870

    Article  CAS  Google Scholar 

  48. Aprilia A, Wulandari P, Suendo V, Herman, Hidayat R, Fujii A, Ozaki M (2013) Influences of dopant concentration in sol–gel derived AZO layer on the performance of P3HT:PCBM based inverted solar cell. Sol Energy Mater Sol Cells 111:181–188

  49. Hidayat R, Handayani Y, Wulandari P (2015) Study of interfacial charge transfer loss in hybrid solar cells by impedance spectroscopy. Mater Sci Forum 827:162–167

    Article  Google Scholar 

  50. Handayani Y, Wulandari P, Hidayat R (2015) Photovoltaic characteristics of inverted bulk-heterojunction organic solar cells with titanium doped ZnO as their electron transport layer. Adv Mater Res 1112:251–255

    Article  Google Scholar 

  51. Liang Z, Liu W, Chen J, Hu L, Dai S (2015) Microscopic dynamics research on the “mature” process of dye-sensitized solar cells after injection of highly concentrated electrolyte. ACS Appl Mater Interfaces 7:1100–1106

    Article  CAS  Google Scholar 

  52. Southall JP, Hubbard HVSA, Johnston SF, Rogers V, Davies GR, McIntyre JE, Ward IM (1996) Ionic conductivity and viscosity correlations in liquid electrolytes for incorporation into PVDF gel electrolytes. Solid State Ionics 85:51–60

    Article  CAS  Google Scholar 

  53. Kang Y, Lee J, Suh DH, Lee C (2005) A new polysiloxane based cross-linker for solid polymer electrolyte. J Power Sources 146:391–396

    Article  CAS  Google Scholar 

  54. Kang Y, Lee J, Lee JI, Lee C (2007) Ionic conductivity and electrochemical properties of cross-linked solid polymer electrolyte using star-shaped siloxane acrylate. J Power Sources 165:92–96

    Article  CAS  Google Scholar 

  55. Fonseca CP, Neves S (2002) Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide). J Power Sources 104:85–89

    Article  CAS  Google Scholar 

  56. Zistler M, Schreiner C, Wachter P, Wasserscheid P, Gerhard D, Gores HJ (2008) Electrochemical characterization of 1-ethyl-3-methylimidazolium thiocyanate and measurement of triiodide diffusion coefficients in blends of two ionic liquids. Int J Electrochem Sci 3:236–245

    CAS  Google Scholar 

  57. Zistler M, Wachter P, Wasserscheid P, Gerhard D, Hinsch A, Sastrawan R, Gores HJ (2006) Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids. Electrochim Acta 52:161–169

    Article  CAS  Google Scholar 

  58. Bandara TMWJ, Mellander BE (2011) Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. In: Kokorin A (ed) Ionic liquids, theory, properties, new approaches. Intech Croatia, pp 383–406. doi:10.5772/15183

  59. Ejigu A, Lovelock KRJ, Licence P, Walsh DA (2011) Iodide/triiodide electrochemistry in ionic liquids: effect of viscosity on mass transport, voltammetry and scanning electrochemical microscopy. Electrochim Acta 56:10313–10320

    Article  CAS  Google Scholar 

  60. Hao F, Lin H, Liu Y, Li J (2011) Anionic structure-dependent photoelectrochemical responses of dye-sensitized solar cells based on a binary ionic liquid electrolyte. Phys Chem Chem Phys 13:6416–6422

    Article  CAS  Google Scholar 

  61. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    Article  CAS  Google Scholar 

  62. Lin Lan J, Chien Wei T, Feng SP, Wan CC, Cao G (2012) Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities. J Phys Chem C 116:25727–25733

    Article  Google Scholar 

  63. Mathewa A, Ananda V, Raoa GM, Munichandraiahb N (2013) Effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells for various I2/LiI ratios. Electrochim Acta 87:92–96

    Article  Google Scholar 

  64. Timmer B, Sluyters-Rehbach M, Sluyters JH (1969) Electrode kinetics and double layer structure. Surf Sci 18:44–61

    Article  CAS  Google Scholar 

  65. Lewerenz HJ (2013) On the structure of the Helmholtz layer and its implications on electrode kinetics. ECS Trans 50:3–20

    Article  Google Scholar 

  66. Soestbergen M (2012) Frumkin-Butler-Volmer theory and mass transfer. Russ J Electrochem 48:570–579

    Article  CAS  Google Scholar 

  67. Maçaira J, Andrade L, Mendes A (2014) Modeling, simulation and design of dye sensitized solar cells. RSC Adv 4:2830–2844

    Article  Google Scholar 

  68. Gong J, Sumathy K, Zhou Z, Qiao Q (2017) Modeling of interfacial and bulk charge transfer in dye-sensitized solar cells. Cogent Eng 4:1287231

    Article  Google Scholar 

  69. Feldt SM (2013) Alternative redox couples for dye-sensitized solar cell. Dissertation, University of Uppsala

  70. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118

    Article  CAS  Google Scholar 

  71. Fabregat-Santiago F, Bisquert J, Boschloo G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energy Mater Sol Cells 87:117–131

    Article  CAS  Google Scholar 

  72. Marangoci N, Ardeleanu R, Ursu L, Ibanescu C, Danu M, Pinteala M, Simionescu BC (2012) Polysiloxane ionic liquids as good solvents for β-cyclodextrin-polydimethylsiloxane polyrotaxane structures. Beilstein J Org Chem 8:1610–1618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Ministry of Research and Technology of Indonesia through Program Insinas 2013/14 with contract no. 086a/I.1.C01/PL/2013 and 196e/I1.C01.2/PL/2014. The authors also acknowledge Dr. Ahmad Rohialdi from the Inorganic and Physical Chemistry Division at ITB for allowing extensive use of the EIS facilities in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmat Hidayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsyad, W.O.S., Bahar, H., Prijamboedi, B. et al. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte. Ionics 24, 901–914 (2018). https://doi.org/10.1007/s11581-017-2230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2230-7

Keywords

Navigation