Skip to main content
Log in

Non-linear diffusion of image noise with minimal iterativity

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Non-linear diffusion (ND) is an iterative difference equation used in several image processing applications such as denoising, segmentation, or compression. The number of iterations required to achieve optimal processing can be very high, making ND not suitable for real-time requirements. In this paper, we study how to reduce complexity of ND so as to achieve minimal number of iterations for real-time image denoising. To do this, we first study the relations between parameters of the iterative equation: the number of iterations, the time step, and the edge strength. We then proceed by estimating the minimally required number of iterations to achieve effective denoising. Then, we relate the edge strength to the number of iterations, to noise, and to the image structure. The resulted minimal iterativity ND is very fast, while still achieves similar or better noise reduction compared to related ND work. This paper also shows how the proposed spatial filter is suitable for structure-sensitive object segmentation and temporal noise reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achkar F., Amer A.: Hysteresis-based selective Gaussian mixture models for real-time background maintenance. In: Proceedings of the SPIE Visual Communications and Image Process, vol. 6508, pp. 2J1–2J12. San Jose (2007)

  2. Acton, S.: Edge enhancement of infrared imagery by way of the anisotropic diffusion pyramid. In: Proceedings of the IEEE International Conference of Image Process, pp. 16–19. Lausanne (1996)

  3. Acton, S.: Multigrid anisotropic diffusion. IEEE Trans. Image Process. 7(3):280–291 (1998)

    Article  MathSciNet  Google Scholar 

  4. Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9):2694–2701 (2006)

    Article  Google Scholar 

  5. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3):199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atzori, L., Natale, F.D., Granelli, F.: Adaptive anisotropic filtering (AAF) for real-time visual enhancement of MPEG-coded video sequences. IEEE Trans. Circuits Syst. Video Techn. 12(5):285–298 (2002)

    Article  Google Scholar 

  7. Barcelos, C., Boaventura, M., Silva, E. A well-balanced flow equation for noise removal and edge detection. IEEE Trans. Image Process. 12(7):751–763 (2003)

    Article  Google Scholar 

  8. Barcelos, C., Boaventura, M., Silva, E.: Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters. Comput. Appl. Math. 24(1):131–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Black, M., Sapiro, G., Marimont, D., Heeger, D. Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3):421–432 (1998)

    Article  Google Scholar 

  10. Fujio T. (1980) A universal weighted power function of television noise and its application to high-definition TV-system design. IEEE Trans. Broadc. BC-26(2):39–48

    Article  Google Scholar 

  11. Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging. 11(2):221–232

    Article  Google Scholar 

  12. Ghazal, M., Su, C., Amer, A.: Motion and region detection for effective recursive temporal noise reduction. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 677–680. ICASSP, 2007, Honolulu (2007)

  13. Gilboa, G., Sochen, N., Zeevi, Y.: Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. Image Process. 15(8):2269–2280 (2006)

    Article  Google Scholar 

  14. Hongwei, Z., Jianwei, Z., Jian, C., Wulin, W., Jinfeng, G., Xu, W.: Robust fast marching method based on anisotropic diffusion. In: International Conference on Natural Computation, pp. 159–162. IEEE Computer Society, Washington, DC (2007)

  15. Kichenassamy, S.: The Perona–Malik paradox. J. Appl. Math. 57:1328–1342 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Krutz, A., Kunter, M., Mandal, M., Frater, M., Sikora, T.: Motion-based object segmentation using sprites and anisotropic diffusion. In: International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). Santorini (2007)

  17. Lee, S., Kang, M.: Spatio-temporal video filtering algorithm based on 3-D anisotropic diffusion equation. In: Proceedings of the IEEE International Conference of Image Process, pp II, 447–450 (1998)

  18. Mosteller, F., Tukey, J.: Data analysis and regression. Addison-Wesley, Reading (1977)

  19. Mrázek, P.: Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comput. Vis. 52(2/3):189–203 (2003)

    Article  Google Scholar 

  20. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):692–639 (1990)

    Article  Google Scholar 

  21. Rosin, P.L.: Thresholding for change detection. Comput. Vis. Image Underst. 86:79–95 (2002)

    Article  MATH  Google Scholar 

  22. Sahni, O., Müller, J., Jansen, K., Shephard, M., Taylor, C.: Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Scharr, H., Spies, H.: Accurate optical flow in noisy image sequences using flow adapted anisotropic diffusion. Signal Process. Image Commun. 20(6):537–553 (2005)

    Article  Google Scholar 

  24. Shao, H., Zou, H.: Threshold estimation based on Perona–Malik model. In: International Conference on Computational Intelligence and Software Engineering, pp. 1–4. IEEE, Wuhan (2009)

  25. Stewart, C.: Robust parameter estimation in computer vision. SIAM Rev. 41(3):513–537 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, J., Sun, Q., Cao, Y., Liu, J.: An adaptive anisotropic diffusion filter for noise reduction in MRI images. In: IEEE International Conference on Mechatronics and Automation, Harbin, pp. 1299–1304 (2007)

  27. Tschumperlé, D.: Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. Int. J. Comput. Vis. 68(1):65–82 (2006)

    Article  Google Scholar 

  28. Voci, F., Mascioli, F.: ISAR image segmentation by non linear diffusion equation. In: IEEE Conference on Radar, pp. 835–838 (2006)

  29. Voci, F., Eiho, S., Sugimoto, N., Sekiguchi, H.: Estimating the gradient in the Perona-Malik equation. IEEE Signal Process. Mag. 21(3):39–65 (2004)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13:600–612 (2004)

    Article  Google Scholar 

  31. Weickert, J.: Coherence-enhancing diffusion of colour images. IVC. 17(3/4):201–212 (1999)

    Article  Google Scholar 

  32. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3):398–410 (1998)

    Article  Google Scholar 

  33. Yao, S., Lin, W., Ong, E.P., Lu, Z.: Recovery of compressed videos using forward and backward anisotropic diffusion. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2006)

  34. Yu, Y., Acton, S.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11):1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  35. Zhang, J., Zheng, J., Cai, J.: A diffusion approach to seeded image segmentation. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 2125–2132 (2010)

  36. Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15:59–76 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Rifkah.

Additional information

This work was supported, in part, by Le Fonds québécois de la recherche sur la nature et les technologies, NATEQ. The authors acknowledge the help of Dr. Marco Bertola, from the department of Mathematics and Statistics, Concordia University, in mathematical concepts related to linear scale space.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rifkah, E., Amer, A. Non-linear diffusion of image noise with minimal iterativity. J Real-Time Image Proc 11, 445–455 (2016). https://doi.org/10.1007/s11554-013-0340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0340-7

Keywords

Navigation