Skip to main content

Advertisement

Log in

Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the accuracy of three-dimensional cephalometric measurements obtained through an automatic landmark detection algorithm compared to those obtained through manual identification.

Methods

The study demonstrates a comparison of 51 cephalometric measurements (28 linear, 16 angles and 7 ratios) on 30 CBCT (cone beam computed tomography) images. The analysis was performed to compare measurements based on 21 cephalometric landmarks detected automatically and those identified manually by three observers.

Results

Inter-observer ICC for each landmark was found to be excellent (\({>}0.9\)) among three observers. The unpaired t-test revealed that there was no statistically significant difference in the measurements based on automatically detected and manually identified landmarks. The difference between the manual and automatic observation for each measurement was reported as an error. The highest mean error in the linear and angular measurements was found to be 2.63 mm (\(\hbox {Or}_{\mathrm{L}}\hbox {-Or}_{\mathrm{R}}\) distance) and \(2.12^{\circ }\) (\(\hbox {Co}_{\mathrm{L}}\hbox {-Go}_{\mathrm{L}}\)-Me angle), respectively. The highest mean error in the group of distance ratios was 0.03 (for N-Me/N-ANS and \(\hbox {Go}_{\mathrm{R}}\hbox {-Gn/S-N}\)).

Conclusion

Cephalometric measurements computed from automatic detection of landmarks on 3D CBCT image were as accurate as those computed from manual identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Broadbent BH (1931) A new X-ray technique and its application to orthodontia. Angle Orthod 1(2):45–66. doi:10.1043/0003-3219(1931)001<0045:anxtai>2.0.co;2

  2. Hofrath H (1931) Die Bedeutung der Röntgen, Fern-und Abstandsaufnahme für die Diagnostik der Kieferanomalien. Fortschr Orthod 1:232–242

    Google Scholar 

  3. Baumrind S, Frantz RC (1971) The reliability of head film measurements. 1. Landmark identification. Am J Orthod 60(2):111–127

    Article  CAS  PubMed  Google Scholar 

  4. Chien P, Parks E, Eraso F, Hartsfield J, Roberts W, Ofner S (2009) Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol 38(5):262–273. doi:10.1259/dmfr/81889955

    Article  CAS  PubMed  Google Scholar 

  5. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S (1997) Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 34(2):111–116

    Article  CAS  PubMed  Google Scholar 

  6. Tulunoglu O, Esenlik E, Gulsen A, Tulunoglu I (2011) A comparison of three-dimensional and two-dimensional cephalometric evaluations of children with cleft lip and palate. Eur J Dent 5(4):451–458

    PubMed  PubMed Central  Google Scholar 

  7. Park CS, Park JK, Kim H, Han SS, Jeong HG, Park H (2012) Comparison of conventional lateral cephalograms with corresponding CBCT radiographs. Imaging Sci Dent 42(4):201–205

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nur M, Kayipmaz S, Bayram M, Celikoglu M, Kilkis D, Sezgin OS (2012) Conventional frontal radiographs compared with frontal radiographs obtained from cone beam computed tomography. Angle Orthod 82(4):579–584

    Article  PubMed  Google Scholar 

  9. Olmez H, Gorgulu S, Akin E, Bengi AO, Tekdemir I, Ors F (2011) Measurement accuracy of a computer-assisted three-dimensional analysis and a conventional two-dimensional method. Angle Orthod 81(3):375–382

    Article  PubMed  Google Scholar 

  10. Moshiri M, Scarfe WC, Hilgers ML, Scheetz JP, Silveira AM, Farman AG (2007) Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am J Orthod Dentofacial Orthop 132(4):550–560

    Article  PubMed  Google Scholar 

  11. Gribel BF, Gribel MN, Frazao DC, McNamara JA Jr, Manzi FR (2011) Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod 81(1):26–35

    Article  PubMed  Google Scholar 

  12. Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y (2011) Reliability and the smallest detectable difference of measurements on 3-dimensional cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 140(3):e107–114

    Article  PubMed  Google Scholar 

  13. Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 72(1):75–80

    PubMed  Google Scholar 

  14. Rossini G, Cavallini C, Cassetta M, Barbato E (2011) 3D cephalometric analysis obtained from computed tomography. Review of the literature. Ann Stomatol (Roma) 2(3–4):31–39

    Google Scholar 

  15. Hassan B, van der Stelt P, Sanderink G (2009) Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod 31(2):129–134

    Article  PubMed  Google Scholar 

  16. Zamora N, Llamas JM, Cibrian R, Gandia JL, Paredes V (2012) A study on the reproducibility of cephalometric landmarks when undertaking a three-dimensional (3D) cephalometric analysis. Med Oral Patol Oral Cir Bucal 17(4):e678–688

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lagravere MO, Gordon JM, Guedes IH, Flores-Mir C, Carey JP, Heo G, Major PW (2009) Reliability of traditional cephalometric landmarks as seen in three-dimensional analysis in maxillary expansion treatments. Angle Orthod 79(6):1047–1056

    Article  PubMed  Google Scholar 

  18. Gribel BF, Gribel MN, Manzi FR, Brooks SL, McNamara JA Jr (2011) From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment. Angle Orthod 81(1):3–10

  19. Fuyamada M, Nawa H, Shibata M, Yoshida K, Kise Y, Katsumata A, Ariji E, Goto S (2011) Reproducibility of landmark identification in the jaw and teeth on 3-dimensional cone-beam computed tomography images. Angle Orthod 81(5):843–849. doi:10.2319/010711-5.1

    Article  PubMed  Google Scholar 

  20. de Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D (2009) Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(2):256–265

    Article  PubMed  Google Scholar 

  21. Ludlow JB, Gubler M, Cevidanes L, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop 136(3):312–313

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hassan B, Nijkamp P, Verheij H, Tairie J, Vink C, van der Stelt P, van Beek H (2013) Precision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Eur J Orthod 35(1):38–44. doi:10.1093/ejo/cjr050

    Article  PubMed  Google Scholar 

  23. Shahidi S, Bahrampour E, Soltanimehr E, Zamani A, Oshagh M, Moattari M, Mehdizadeh A (2014) The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images. BMC Med Imaging 14(1):1471–2342

    Article  Google Scholar 

  24. Makram M, Kamel H (2014) Reeb graph for automatic 3D cephalometry. Int J Image Process (IJIP) 8(2):17–65

    Google Scholar 

  25. Gupta A, Kharbanda O, Sardana V, Balachandran R, Sardana H (2015) A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J CARS:1–16. doi:10.1007/s11548-015-1173-6

  26. Yang J, Ling X, Lu Y, Wei M, Ding G (2001) Cephalometric image analysis and measurement for orthognathic surgery. Med Biol Eng Comput 39(3):279–284

    Article  CAS  PubMed  Google Scholar 

  27. Lagravere MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G, Major PW (2010) Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofacial Orthop 137(5):598–604

    Article  PubMed  Google Scholar 

  28. Tomasi C, Bressan E, Corazza B, Mazzoleni S, Stellini E, Lith A (2011) Reliability and reproducibility of linear mandible measurements with the use of a cone-beam computed tomography and two object inclinations. Dentomaxillofac Radiol 40(4):244–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swennen GRJ, Schutyser FAC, Hausamen JE (2005) Three-dimensional cephalometry: a color atlas and manual. Springer, Berlin

    Google Scholar 

  30. Kharbanda OP (2009) Orthodontics: Diagnosis and Management of Malocclusion and Dentofacial Deformities, 1st edn. Elsevier, Chennai

    Google Scholar 

  31. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. [corrected]. Position statement by the American Academy of Oral and Maxillofacial Radiology (2013). Oral Surg Oral Med Oral Pathol Oral Radiol 116 (2):238–257

  32. Dula K, Bornstein MM, Buser D, Dagassan-Berndt D, Ettlin DA, Filippi A, Gabioud F, Katsaros C, Krastl G, Lambrecht JT, Lauber R, Luebbers HT, Pazera P, Turp JC (2014) SADMFR guidelines for the use of cone-beam computed tomography/digital volume tomography. Swiss Dent J 124(11):1169–1183

    PubMed  Google Scholar 

  33. Michele C, Federica A, Roberto DG, Alessandro S (2015) Two-dimensional and three-dimensional cephalometry using cone beam computed tomography scans. J Craniofac Surg 26(4):e311–e315. doi:10.1097/scs.0000000000001700

    Article  PubMed  Google Scholar 

  34. Silva MA, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E (2008) Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 133(5):019

    Article  Google Scholar 

  35. Swennen GJ, Schutyser, Filip, Hausamen, Jarg-Erich (2006). In: Three-dimensional cephalometry: a color atlas and manual. Springer, Berlin. doi:10.1007/3-540-29011-7_3

  36. Olszewski R, Cosnard G, Macq B, Mahy P, Reychler H (2006) 3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software. Neuroradiology 48(11):853–862

  37. Lee M, Kanavakis G, Miner RM (2014) Newly defined landmarks for a three-dimensionally based cephalometric analysis: a retrospective cone-beam computed tomography scan review. Angle Orthod 27:27

    Google Scholar 

  38. Bayome M, Park JH, Kook YA (2013) New three-dimensional cephalometric analyses among adults with a skeletal class I pattern and normal occlusion. Korean J Orthod 43(2):62–73

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge National Informatics Centre (NIC), Department of Electronics and Information Technology (DeitY), New Delhi, as a funding agency in partial support of this research work. The authors would also like to thank Dr. Shilpa Kalra and Dr. Sushma Chaurasia from All India Institute of Medical Sciences—Centre for Dental Education and Research, New Delhi, India, for manual plotting of cephalometric landmarks on the dataset used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar Sardana.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kharbanda, O.P., Sardana, V. et al. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. Int J CARS 11, 1297–1309 (2016). https://doi.org/10.1007/s11548-015-1334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1334-7

Keywords

Navigation