Skip to main content
Log in

Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds

  • Oncology Imaging
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Background

PET-based radiomics features could predict the biological characteristics of primary prostate cancer (PCa). However, the optimal thresholds to predict the biological characteristics of PCa are unknown. This study aimed to compare the predictive power of 18F-PSMA-1007 PET radiomics features at different thresholds for predicting multiple biological characteristics.

Methods

One hundred and seventy-three PCa patients with complete preoperative 18F-PSMA-1007 PET examination and clinical data before surgery were collected. The prostate lesions' volumes of interest were semi-automatically sketched with thresholds of 30%, 40%, 50%, and 60% maximum standardized uptake value (SUVmax). The radiomics features were respectively extracted. The prediction models of Gleason score (GS), extracapsular extension (ECE), and vascular invasion (VI) were established using the support vector machine. The performance of models from different thresholding regions was assessed using receiver operating characteristic curve and confusion matrix-derived indexes.

Results

For predicting GS, the 50% SUVmax model showed the best predictive performance in training (AUC, 0.82 [95%CI 0.74–0.88]) and testing cohorts (AUC, 0.80 [95%CI 0.66–0.90]). For predicting ECE, the 40% SUVmax model exhibit the best predictive performance (AUC, 0.77 [95%CI 0.68–0.84] and 0.77 [95%CI 0.63–0.88]). As for VI, the 50% SUVmax model had the best predictive performance (AUC, 0.74 [95%CI 0.65–0.82] and 0.74 [95%CI 0.56–0.82]).

Conclusion

The 18F-1007-PSMA PET-based radiomics features at 40–50% SUVmax showed the best predictive performance for multiple PCa biological characteristics evaluation. Compared to the single PSA model, radiomics features may provide additional benefits in predicting the biological characteristics of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Guglielmo P, Marturano F, Bettinelli A, Gregianin M, Paiusco M, Evangelista L (2021) Additional value of PET radiomic features for the initial staging of prostate cancer: a systematic review from the literature. Cancers (Basel). https://doi.org/10.3390/cancers13236026

    Article  PubMed Central  Google Scholar 

  3. Foley RW, Redman SL, Graham RN, Loughborough WW, Little D (2020) Fluorine-18 labelled prostate-specific membrane antigen (PSMA)-1007 positron-emission tomography-computed tomography: normal patterns, pearls, and pitfalls. Clin Radiol 75(12):903–913. https://doi.org/10.1016/j.crad.2020.06.031

    Article  CAS  PubMed  Google Scholar 

  4. Moussa AS, Li J, Soriano M, Klein EA, Dong F, Jones JS (2009) Prostate biopsy clinical and pathological variables that predict significant grading changes in patients with intermediate and high grade prostate cancer. BJU Int 103(1):43–48. https://doi.org/10.1111/j.1464-410X.2008.08059.x

    Article  PubMed  Google Scholar 

  5. Hoogland AM, Kweldam CF, van Leenders GJ (2014) Prognostic histopathological and molecular markers on prostate cancer needle-biopsies: a review. BioMed Res Int 2014:341324. https://doi.org/10.1155/2014/341324

    Article  PubMed  PubMed Central  Google Scholar 

  6. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974. https://doi.org/10.1001/jama.280.11.969

    Article  CAS  PubMed  Google Scholar 

  7. Jeong BC, Chalfin HJ, Lee SB, Feng Z, Epstein JI, Trock BJ, Partin AW, Humphreys E, Walsh PC, Han M (2015) The relationship between the extent of extraprostatic extension and survival following radical prostatectomy. Eur Urol 67(2):342–346. https://doi.org/10.1016/j.eururo.2014.06.015

    Article  PubMed  Google Scholar 

  8. Kwart AM, Sims JE (1978) Blood vascular invasion: a poor prognostic factor in adenocarcinoma of the prostate. J Urol 119(1):138–140. https://doi.org/10.1016/s0022-5347(17)57411-x

    Article  CAS  PubMed  Google Scholar 

  9. Egevad L, Delahunt B, Srigley JR, Samaratunga H (2016) International Society of Urological Pathology (ISUP) grading of prostate cancer—an ISUP consensus on contemporary grading. APMIS Acta Pathol Microbiol Immunol Scand 124(6):433–435. https://doi.org/10.1111/apm.12533

    Article  Google Scholar 

  10. Serefoglu EC, Altinova S, Ugras NS, Akincioglu E, Asil E, Balbay MD (2013) How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can Urol Assoc J J l’Assoc Urol Can 7(5–6):E293-298. https://doi.org/10.5489/cuaj.11224

    Article  Google Scholar 

  11. Czarniecki M, Mena E, Lindenberg L, Cacko M, Harmon S, Radtke JP, Giesel F, Turkbey B, Choyke PL (2018) Keeping up with the prostate-specific membrane antigens (PSMAs): an introduction to a new class of positron emission tomography (PET) imaging agents. Transl Androl Urol 7(5):831–843. https://doi.org/10.21037/tau.2018.08.03

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zippel C, Ronski SC, Bohnet-Joschko S, Giesel FL, Kopka K (2020) Current status of PSMA-Radiotracers for prostate cancer: data analysis of prospective trials listed on ClinicalTrials.gov. Pharmaceuticals (Basel, Switzerland) 13(1):12. https://doi.org/10.3390/ph13010012

    Article  CAS  Google Scholar 

  13. Wester HJ, Schottelius M (2019) PSMA-targeted radiopharmaceuticals for imaging and therapy. Sem Nucl Med 49(4):302–312. https://doi.org/10.1053/j.semnuclmed.2019.02.008

    Article  Google Scholar 

  14. Moazemi S, Erle A, Khurshid Z, Lutje S, Muders M, Essler M, Schultz T, Bundschuh RA (2021) Decision-support for treatment with (177)Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters. Ann Transl Med 9(9):818. https://doi.org/10.21037/atm-20-6446

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thomas L, Kantz S, Hung A, Monaco D, Gaertner FC, Essler M, Strunk H, Laub W, Bundschuh RA (2018) (68)Ga-PSMA-PET/CT imaging of localized primary prostate cancer patients for intensity modulated radiation therapy treatment planning with integrated boost. Eur J Nucl Med Mol Imaging 45(7):1170–1178. https://doi.org/10.1007/s00259-018-3954-y

    Article  CAS  PubMed  Google Scholar 

  16. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, Giesel F, Haberkorn U, Hope TA, Kopka K, Krause BJ, Mottaghy FM, Schoder H, Sunderland J, Wan S, Wester HJ, Fanti S, Herrmann K (2017) (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44(6):1014–1024. https://doi.org/10.1007/s00259-017-3670-z

    Article  PubMed  Google Scholar 

  17. Sengupta S, Asha Krishnan M, Chattopadhyay S, Chelvam V (2019) Comparison of prostate-specific membrane antigen ligands in clinical translation research for diagnosis of prostate cancer. Cancer Rep (Hoboken, NJ) 2(4):e1169. https://doi.org/10.1002/cnr2.1169

    Article  CAS  Google Scholar 

  18. Awenat S, Piccardo A, Carvoeiras P, Signore G, Giovanella L, Prior JO, Treglia G (2021) Diagnostic role of (18)F-PSMA-1007 PET/CT in prostate cancer staging: a systematic review. Diagnostics (Basel) 11(3):552. https://doi.org/10.3390/diagnostics11030552

    Article  CAS  Google Scholar 

  19. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  20. Damascelli A, Gallivanone F, Cristel G, Cava C, Interlenghi M, Esposito A, Brembilla G, Briganti A, Montorsi F, Castiglioni I, De Cobelli F (2021) Advanced imaging analysis in prostate MRI: building a radiomic signature to predict tumor aggressiveness. Diagnostics (Basel) 11(4):594. https://doi.org/10.3390/diagnostics11040594

    Article  Google Scholar 

  21. Papp L, Spielvogel CP, Grubmuller B, Grahovac M, Krajnc D, Ecsedi B, Sareshgi RAM, Mohamad D, Hamboeck M, Rausch I, Mitterhauser M, Wadsak W, Haug AR, Kenner L, Mazal P, Susani M, Hartenbach S, Baltzer P, Helbich TH, Kramer G, Shariat SF, Beyer T, Hartenbach M, Hacker M (2021) Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [(68)Ga]Ga-PSMA-11 PET/MRI. Eur J Nucl Med Mol Imaging 48(6):1795–1805. https://doi.org/10.1007/s00259-020-05140-y

    Article  CAS  PubMed  Google Scholar 

  22. Solari EL, Gafita A, Schachoff S, Bogdanovic B, Villagran Asiares A, Amiel T, Hui W, Rauscher I, Visvikis D, Maurer T, Schwamborn K, Mustafa M, Weber W, Navab N, Eiber M, Hatt M, Nekolla SG (2022) The added value of PSMA PET/MR radiomics for prostate cancer staging. Eur J Nucl Med Mol Imaging 49(2):527–538. https://doi.org/10.1007/s00259-021-05430-z

    Article  PubMed  Google Scholar 

  23. Alongi P, Stefano A, Comelli A, Laudicella R, Scalisi S, Arnone G, Barone S, Spada M, Purpura P, Bartolotta TV, Midiri M, Lagalla R, Russo G (2021) Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur Radiol 31(7):4595–4605. https://doi.org/10.1007/s00330-020-07617-8

    Article  CAS  PubMed  Google Scholar 

  24. Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fassbender TF, Bronsert P, Koeber G, Schilling O, Ruf J, Werner M, Jilg CA, Baltas D, Mix M, Grosu AL (2019) Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer—a comparison study with histology reference. Theranostics 9(9):2595–2605. https://doi.org/10.7150/thno.32376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cysouw MCF, Jansen BHE, van de Brug T, Oprea-Lager DE, Pfaehler E, de Vries BM, van Moorselaar RJA, Hoekstra OS, Vis AN, Boellaard R (2021) Machine learning-based analysis of [(18)F]DCFPyL PET radiomics for risk stratification in primary prostate cancer. Eur J Nucl Med Mol Imaging 48(2):340–349. https://doi.org/10.1007/s00259-020-04971-z

    Article  CAS  PubMed  Google Scholar 

  26. Tu SJ, Tran VT, Teo JM, Chong WC, Tseng JR (2021) Utility of radiomic zones for risk classification and clinical outcome predictions using supervised machine learning during simultaneous (11) C-choline PET/MRI acquisition in prostate cancer patients. Med Phys 48(9):5192–5201. https://doi.org/10.1002/mp.15064

    Article  CAS  PubMed  Google Scholar 

  27. Giesel F, Sterzing F, Schlemmer H, Holland-Letz T, Mier W, Rius M, Afshar-Oromieh A, Kopka K, Debus J, Haberkorn U, Kratochwil C (2016) Intra-individual comparison of (68)Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer. Eur J Nucl Med Mol Imaging 43(8):1400–1406. https://doi.org/10.1007/s00259-016-3346-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamboglou C, Schiller F, Fechter T, Wieser G, Jilg CA, Chirindel A, Salman N, Drendel V, Werner M, Mix M, Meyer PT, Grosu AL (2016) (68)Ga-HBED-CC-PSMA PET/CT versus histopathology in primary localized prostate cancer: a voxel-wise comparison. Theranostics 6(10):1619–1628. https://doi.org/10.7150/thno.15344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettermann AS, Zamboglou C, Kiefer S, Jilg CA, Spohn S, Kranz-Rudolph J, Fassbender TF, Bronsert P, Nicolay NH, Gratzke C, Bock M, Ruf J, Benndorf M, Grosu AL (2019) [(68)Ga-]PSMA-11 PET/CT and multiparametric MRI for gross tumor volume delineation in a slice by slice analysis with whole mount histopathology as a reference standard—implications for focal radiotherapy planning in primary prostate cancer. Radiother Oncol 141:214–219. https://doi.org/10.1016/j.radonc.2019.07.005

    Article  PubMed  Google Scholar 

  30. Incerti E, Fodor A, Mapelli P, Fiorino C, Alongi P, Kirienko M, Giovacchini G, Busnardo E, Gianolli L, Di Muzio N, Picchio M (2015) Radiation treatment of lymph node recurrence from prostate cancer: Is 11C-choline PET/CT predictive of survival outcomes? J Nucl Med 56(12):1836–1842. https://doi.org/10.2967/jnumed.115.163741

    Article  CAS  PubMed  Google Scholar 

  31. Zwanenburg A, Leger S, Vallières M, Löck S, Initiative F (2016) Image biomarker standardisation initiative

  32. Zamboglou C, Bettermann AS, Gratzke C, Mix M, Ruf J, Kiefer S, Jilg CA, Benndorf M, Spohn S, Fassbender TF, Bronsert P, Chen M, Guo H, Wang F, Qiu X, Grosu AL (2021) Uncovering the invisible-prevalence, characteristics, and radiomics feature-based detection of visually undetectable intraprostatic tumor lesions in (68)GaPSMA-11 PET images of patients with primary prostate cancer. Eur J Nucl Med Mol Imaging 48(6):1987–1997. https://doi.org/10.1007/s00259-020-05111-3

    Article  CAS  PubMed  Google Scholar 

  33. Spohn SKB, Kramer M, Kiefer S, Bronsert P, Sigle A, Schultze-Seemann W, Jilg CA, Sprave T, Ceci L, Fassbender TF, Nicolay NH, Ruf J, Grosu AL, Zamboglou C (2020) Comparison of manual and semi-automatic [(18)F]PSMA-1007 PET based contouring techniques for intraprostatic tumor delineation in patients with primary prostate cancer and validation with histopathology as standard of reference. Front Oncol 10:600690. https://doi.org/10.3389/fonc.2020.600690

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205. https://doi.org/10.1142/s0219720005001004

    Article  CAS  PubMed  Google Scholar 

  35. Zhu D, Zhang M, Li Q, Liu J, Zhuang Y, Chen Q, Chen C, Xiang Y, Zhang Y, Yang Y (2021) Can perihaematomal radiomics features predict haematoma expansion? Clin Radiol 76(8):e621–e629. https://doi.org/10.1016/j.crad.2021.03.003

    Article  Google Scholar 

  36. Horwich A, Parker C, de Reijke T, Kataja V, Group EGW (2013) Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):106–114. https://doi.org/10.1093/annonc/mdt208

    Article  Google Scholar 

  37. Fan X, Xie N, Chen J, Li T, Cao R, Yu H, He M, Wang Z, Wang Y, Liu H, Wang H, Yin X (2022) Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer. Front Oncol 12:839621. https://doi.org/10.3389/fonc.2022.839621

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mouraviev V, Villers A, Bostwick DG, Wheeler TM, Montironi R, Polascik TJ (2011) Understanding the pathological features of focality, grade and tumour volume of early-stage prostate cancer as a foundation for parenchyma-sparing prostate cancer therapies: active surveillance and focal targeted therapy. BJU Int 108(7):1074–1085. https://doi.org/10.1111/j.1464-410X.2010.10039.x

    Article  PubMed  Google Scholar 

  39. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part B: prostate and bladder tumours. Eur Urol 70(1):106–119. https://doi.org/10.1016/j.eururo.2016.02.028

    Article  PubMed  Google Scholar 

  40. Gleason DF (1992) Histologic grading of prostate cancer: a perspective. Hum Pathol 23(3):273–279. https://doi.org/10.1016/0046-8177(92)90108-f

    Article  CAS  PubMed  Google Scholar 

  41. Andrén O, Fall K, Franzén L, Andersson SO, Johansson JE, Rubin MA (2006) How well does the Gleason score predict prostate cancer death? A 20-year followup of a population based cohort in Sweden. J Urol 175(4):1337–1340. https://doi.org/10.1016/s0022-5347(05)00734-2

    Article  PubMed  Google Scholar 

  42. Stark JR, Perner S, Stampfer MJ, Sinnott JA, Finn S, Eisenstein AS, Ma J, Fiorentino M, Kurth T, Loda M, Giovannucci EL, Rubin MA, Mucci LA (2009) Gleason score and lethal prostate cancer: Does 3 + 4 = 4 + 3? J Clin Oncol 27(21):3459–3464. https://doi.org/10.1200/JCO.2008.20.4669

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hou Y, Zhang YH, Bao J, Bao ML, Yang G, Shi HB, Song Y, Zhang YD (2021) Artificial intelligence is a promising prospect for the detection of prostate cancer extracapsular extension with mpMRI: a two-center comparative study. Eur J Nucl Med Mol Imaging 48(12):3805–3816. https://doi.org/10.1007/s00259-021-05381-5

    Article  CAS  PubMed  Google Scholar 

  44. Seifert R, Herrmann K, Kleesiek J, Schafers M, Shah V, Xu Z, Chabin G, Grbic S, Spottiswoode B, Rahbar K (2020) Semiautomatically quantified tumor volume using (68)Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med 61(12):1786–1792. https://doi.org/10.2967/jnumed.120.242057

    Article  CAS  PubMed  Google Scholar 

  45. Mihatsch PW, Beissert M, Pomper MG, Bley TA, Seitz AK, Kubler H, Buck AK, Rowe SP, Serfling SE, Hartrampf PE, Werner RA (2022) Changing threshold-based segmentation has no relevant impact on semi-quantification in the context of structured reporting for PSMA-PET/CT. Cancers (Basel) 14(2):270. https://doi.org/10.3390/cancers14020270

    Article  CAS  PubMed Central  Google Scholar 

  46. Gafita A, Bieth M, Krönke M, Tetteh G, Navarro F, Wang H, Günther E, Menze B, Weber WA, Eiber M (2019) qPSMA: semiautomatic software for whole-body tumor burden assessment in prostate cancer using (68)Ga-PSMA11 PET/CT. J Nucl Med 60(9):1277–1283. https://doi.org/10.2967/jnumed.118.224055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidkonz C, Cordes M, Schmidt D, Bäuerle T, Goetz TI, Beck M, Prante O, Cavallaro A, Uder M, Wullich B, Goebell P, Kuwert T, Ritt P (2018) (68)Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur J Nucl Med Mol Imaging 45(11):1862–1872. https://doi.org/10.1007/s00259-018-4042-z

    Article  PubMed  Google Scholar 

  48. Schmuck S, von Klot CA, Henkenberens C, Sohns JM, Christiansen H, Wester HJ, Ross TL, Bengel FM, Derlin T (2017) Initial experience with volumetric (68)Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J Nucl Med 58(12):1962–1968. https://doi.org/10.2967/jnumed.117.193581

    Article  CAS  PubMed  Google Scholar 

  49. Draulans C, De Roover R, van der Heide UA, Kerkmeijer L, Smeenk RJ, Pos F, Vogel WV, Nagarajah J, Janssen M, Isebaert S, Maes F, Mai C, Oyen R, Joniau S, Kunze-Busch M, Goffin K, Haustermans K (2021) Optimal (68)Ga-PSMA and (18)F-PSMA PET window levelling for gross tumour volume delineation in primary prostate cancer. Eur J Nucl Med Mol Imaging 48(4):1211–1218. https://doi.org/10.1007/s00259-020-05059-4

    Article  PubMed  Google Scholar 

  50. Chang AJ, Autio KA, Roach M 3rd, Scher HI (2014) High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol 11(6):308–323. https://doi.org/10.1038/nrclinonc.2014.68

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bangma CH, Roobol MJ (2012) Defining and predicting indolent and low risk prostate cancer. Crit Rev Oncol Hematol 83(2):235–241. https://doi.org/10.1016/j.critrevonc.2011.10.003

    Article  PubMed  Google Scholar 

  52. Howrey BT, Kuo YF, Lin YL, Goodwin JS (2013) The impact of PSA screening on prostate cancer mortality and overdiagnosis of prostate cancer in the United States. J Gerontol Ser A Biol Sci Med Sci 68(1):56–61. https://doi.org/10.1093/gerona/gls135

    Article  Google Scholar 

Download references

Funding

This study was supported by the Wenzhou Major Program of Science and Technology Innovation (Grant No. ZY2020012), the Health Foundation for Creative Talents in Zhejiang Province, China (Grant No. 2016), the Project Foundation for the College Young and Middle-aged Academic Leader of Zhejiang Province, China (Grant No. 2017), and Basic Research Project of Wenzhou (Grant No. Y2020164).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SB, DZ, YY, KP, ZP, XF and KT. The first draft of the manuscript was written by FY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kun Tang or Yunjun Yang.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All human studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of The First Affiliated Hospital of Wenzhou Medical University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, F., Bian, S., Zhu, D. et al. Machine learning-based radiomics for multiple primary prostate cancer biological characteristics prediction with 18F-PSMA-1007 PET: comparison among different volume segmentation thresholds. Radiol med 127, 1170–1178 (2022). https://doi.org/10.1007/s11547-022-01541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-022-01541-1

Keywords

Navigation