Skip to main content
Log in

Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, early cancer detection of a single living cell is investigated by employing a surface plasmon resonance (SPR)-based photonic crystal fiber (PCF) biosensor structure. The full-vectorial finite element method (FV-FEM) with perfectly matched layers are engaged for numerical analysis. The spectral interrogation and amplitude methods are used to detect the refractive index (RI) variations of cancer cells. The refractive index (RI) varied from 1.392 to 1.401 for six different types of cancerous cells. Obtained numerical results have indicated that, the highest sensitivities for spectral interrogation and amplitude methods are reported as 7142.86nm/RIU for MCF-7, and \(-757 RIU^{- 1}\) for Hela cell, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12):2135–2136

    Article  CAS  Google Scholar 

  2. Thenmozhi H, Rajan MM, Ahmed K (2019) D-shaped pcf sensor based on spr for the detection of carcinogenic agents in food and cosmetics. Optik 180:264–270

    Article  CAS  Google Scholar 

  3. Wang Y, Huang Q, Zhu W, Yang M, Lewis E (2018) Novel optical fiber spr temperature sensor based on mmf-pcf-mmf structure and gold-pdms film. Opt Express 26(2):1910–1917

    Article  CAS  Google Scholar 

  4. Islam MR, Iftekher A, Hasan KR, Nayen MJ, Islam SB (2020) Dual-polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor. Appl Opt 59(11):3296–3305

    Article  CAS  Google Scholar 

  5. Cennamo N, Pesavento M, Zeni L (2020) “A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing.” Sens Actuators B Chem p. 129393

  6. Sugumaran S, Jamlos MF, Ahmad MN, Bellan CS, Schreurs D (2018) Nanostructured materials with plasmonic nanobiosensors for early cancer detection: a past and future prospect. Biosens Bioelectron 100:361–373

    Article  CAS  Google Scholar 

  7. Chen L, Liao D-G, Guo X-G, Zhao J-Y, Zhu Y-M, Zhuang S-L (2019) Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inf Technol Electron Eng 20(5):591–607

    Article  Google Scholar 

  8. Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro TM, François A (2016) Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends. Sensors 17(1):12

    Article  Google Scholar 

  9. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan MD, Uzunangelov V et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944

    Article  CAS  Google Scholar 

  10. Li X (2016) Dynamic changes of driver genes-mutations across clinical stages in nine cancer types. Cancer Med 5(7):1556–1565

    Article  CAS  Google Scholar 

  11. Ott J, Ullrich A, Miller A (2009) The importance of early symptom recognition in the context of early detection and cancer survival. Eur J Cancer 45(16):2743–2748

    Article  CAS  Google Scholar 

  12. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) “Cancer treatment and survivorship statistics.” CA Cancer J Clin 66(4):271–289

  13. Benoy I, Elst H, Van der Auwera I, Van Laere S, Van Dam P, Van Marck E, Scharpe S, Vermeulen P, Dirix L (2004) Real-time rt-pcr correlates with immunocytochemistry for the detection of disseminated epithelial cells in bone marrow aspirates of patients with breast cancer. Br J Cancer 91(10):1813–1820

    Article  CAS  Google Scholar 

  14. Li F-R, Li Q, Zhou H-X, Qi H, Deng C-Y (2013) “Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-rt-pcr.” Nanomedicine: Nanotechnology. Biol Med 9(7):1106–1113

  15. Pan C, Guo M, Nie Z, Xiao X, Yao S (2009) “Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells.” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 21, no. 11, pp. 1321–1326

  16. Li T, Fan Q, Liu T, Zhu X, Zhao J, Li G (2010) Detection of breast cancer cells specially and accurately by an electrochemical method. Biosens Bioelectron 25(12):2686–2689

    Article  CAS  Google Scholar 

  17. Neugebauer U, Clement JH, Bocklitz T, Krafft C, Popp J (2010) Identification and differentiation of single cells from peripheral blood by raman spectroscopic imaging. J Biophotonics 3(8–9):579–587

    Article  CAS  Google Scholar 

  18. Tolstik T, Marquardt C, Matthäus C, Bergner N, Bielecki C, Krafft C, Stallmach A, Popp J (2014) Discrimination and classification of liver cancer cells and proliferation states by raman spectroscopic imaging. Analyst 139(22):6036–6043

    Article  CAS  Google Scholar 

  19. Hajba L, Guttman A (2014) Circulating tumor-cell detection and capture using microfluidic devices. Trends Analyt Chem 59:9–16

    Article  CAS  Google Scholar 

  20. Amin R, Knowlton S, Hart A, Yenilmez B, Ghaderinezhad F, Katebifar S, Messina M, Khademhosseini A, Tasoglu S (2016) 3d-printed microfluidic devices. Biofabrication 8(2):022001

    Article  Google Scholar 

  21. Sharma P, Sharan P, Deshmukh P (2015) “A photonic crystal sensor for analysis and detection of cancer cells.” in 2015 International Conference on Pervasive Computing (ICPC). IEEE, pp. 1–5

  22. Sun D, Ran Y, Wang G (2017) Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber bragg grating. Sensors 17(11):2559

    Article  Google Scholar 

  23. Ramanujam NR, Amiri I, Taya SA, Olyaee S, Udaiyakumar R, Pandian AP, Wilson KJ, Mahalakshmi P, Yupapin P (2019) Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst Technol 25(1):189–196

    Article  Google Scholar 

  24. Aly AH, Zaky ZA (2019) Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 104:102991

    Article  CAS  Google Scholar 

  25. Jabin MA, Ahmed K, Rana MJ, Paul BK, Islam M, Vigneswaran D, Uddin MS (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J 11(4):1–10

    Article  Google Scholar 

  26. Haque E, Hossain MA, Ahmed F, Namihira Y (2018) Surface plasmon resonance sensor based on modified \(D\)-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 18(20):8287–8293

    Article  CAS  Google Scholar 

  27. Mollah MA, Yousufali M, Ankan IM, Rahman MM, Sarker H, Chakrabarti K (2020) “Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer.” Sens Biosensing Res p. 100344

  28. Shevchenko YY, Albert J (2007) Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett 32(3):211–213

    Article  CAS  Google Scholar 

  29. Otupiri R, Akowuah EK, Haxha S, Ademgil H, AbdelMalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J 6(4):1–11

    Article  Google Scholar 

  30. Ademgil H, Haxha S (2015) “Pcf based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications.” Sensors, vol. 15, no. 12, pp. 31 833–31 842

  31. Hochman A, Leviatan Y (2005) Calculation of confinement losses in photonic crystal fibers by use of a source-model technique. JOSA B 22(2):474–480

    Article  CAS  Google Scholar 

  32. Zhou C (2013) Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt Commun 288:42–46

    Article  CAS  Google Scholar 

  33. Hautakorpi M, Mattinen M, Ludvigsen H (2008) Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express 16(12):8427–8432

    Article  Google Scholar 

  34. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14(24):11616–11621

    Article  CAS  Google Scholar 

  35. Yaroslavsky AN, Patel R, Salomatina E, Li C, Lin C, Al-Arashi M, Neel V (2012) High-contrast mapping of basal cell carcinomas. Opt Lett 37(4):644–646

    Article  Google Scholar 

  36. Tsai C, Huang S (2012) “Water distribution in cancer and normal cells.”

  37. Liang X, Liu A, Zhang X, Yap P, Ayi T, Yoon H (2005) “Determination of refractive index for single living cell using integrated biochip.” in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers.TRANSDUCERS’05., vol. 2. IEEE, pp. 1712–1715

  38. Sharan P, Bharadwaj S, Gudagunti FD, Deshmukh P (2014) “Design and modelling of photonic sensor for cancer cell detection.” in 2014 International Conference on the IMpact of E-Technology on US (IMPETUS). IEEE, pp. 20–24

  39. Chillcce E, Cordeiro CMDB, Barbosa L, Cruz CB (2006) “Tellurite photonic crystal fiber made by a stack-and-draw technique.” J Non CrystSolids, vol. 352, no. 32-35, pp. 3423–3428

  40. Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Wang Y (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20313–20322

    Article  CAS  Google Scholar 

  41. Pierson J, Wiederkehr D, Billard A (2005) Reactive magnetron sputtering of copper, silver, and gold. Thin Solid Films 478(1–2):196–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yasli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasli, A. Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Plasmonics 16, 1605–1612 (2021). https://doi.org/10.1007/s11468-021-01425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01425-6

Keywords

Navigation