Skip to main content
Log in

Global strings in extra dimensions: The full map of solutions, matter trapping, and the hierarchy problem

  • Nuclei, Particles, Fields, Gravitation, And Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider (d 0 + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in d 0 dimensions, endowed with a warp factor e depending on the distance l from the string center. All possible regular solutions of the field equations are classified by the behavior of the warp factor and the extradimensional circular radius r(l). Solutions with r → ∞ and r → const > 0 as l → ∞ are interpreted in terms of thick brane-world models. Solutions with r → 0 as ll c > 0, i.e., those with a second center, are interpreted as either multibrane systems (which are appropriate for large enough distances l c between the centers) or as Kaluza-Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the (ɛ, Γ) parameter plane, where ɛ acts as an effective cosmological constant and Γ characterizes the gravitational field strength. The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties for massive fields are found for models with increasing warp factors. Kaluza-Klein-type models are shown to have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the standpoint of hierarchy problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kaluza, Sitzungsber. K. Preuss. Akad. Wiss., Phys. Math. Kl., 966 (1921); O. Klein, Z. Phys. 37, 895 (1926).

  2. K. Akama, Lect. Notes Phys. 176, 267 (1982); V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983); M. Visser, Phys. Lett. B 159, 22 (1985); E. J. Squires, Phys. Lett. B 167, 286 (1986); G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B 287, 717 (1987).

    Article  ADS  Google Scholar 

  3. P. Horava and E. Witten, Nucl. Phys. B 460, 506 (1996); Nucl. Phys. B 475, 94 (1996); E. Witten, Nucl. Phys. B 471, 135 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. B. Acharya, K. Bobkov, G. Kane, et al., hep-th/0606262; G. Burdman, hep-ph/0703194; S. Das, A. Dey, and S. SenGupta, Class. Quantum Grav. 23, L67 (2006); hep-th/0511247; P. Chen, hep-ph/0611378; S. Das, A. Dey, and S. SenGupta, gr-qc/0610021; T. Biswas and A. Notari, hep-ph/0511207; G. Cognola, E. Elizalde, S. Nojiri, et al., hep-th/0601008; S. Das, A. Dey, and S. SenGupta, hep-th/0704.3113; C. S. Lim, N. Maru, and K. Hasegawa, hep-th/0605180.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. D. A. Kirzhnits, Pis’ma Zh. Éksp. Teor. Fiz. 15, 745 (1972) [JETP Lett. 15, 529 (1972)].

    ADS  Google Scholar 

  7. Ya. B. Zel’dovich, I. Yu. Kobzarev, and L. B. Okun’, Zh. Éksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1975)].

    ADS  Google Scholar 

  8. O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev. D 62, 046008 (2000); hepth/9909134.

  9. M. Gremm, Phys. Rev. D 62, 044017 (2000); A. Davidson and P. D. Mannheim, hep-th/0009064; C. Csaki, J. Erlich, T. J. Hollowood, and Y. Shirman, Nucl. Phys. B 581, 309 (2000); D. Bazeia, F. A. Brito, and J. R. Nascimento, Phys. Rev. D 68, 085007 (2003).

  10. S. Kobayashi, K. Koyama, and J. Soda, Phys. Rev. D 65, 064014 (2002).

    Google Scholar 

  11. A. Melfo, N. Pantoja, and A. Skirzewski, Phys. Rev. D 67, 105003 (2003).

    Google Scholar 

  12. R. Ghoroku and M. Yahiro, hep-th/0305150.

  13. K. A. Bronnikov and B. E. Meierovich, Gravit. Cosmol. 9, 313 (2003); gr-qc/0402030.

    MATH  MathSciNet  ADS  Google Scholar 

  14. S. T. Abdyrakhmanov, K. A. Bronnikov, and B. E. Meierovich, Gravit. Cosmol. 11, 82 (2005); grqc/0503055.

    MATH  ADS  Google Scholar 

  15. I. Olasagasti and A. Vilenkin, Phys. Rev. D 62, 044014 (2000); hep-th/0003300.

  16. E. Roessl and M. Shaposhnikov, Phys. Rev. D 66, 084008 (2002); hep-th/0205320.

  17. K. A. Bronnikov and B. E. Meierovich, Zh. Éksp. Teor. Fiz. 128, 1184 (2005) [JETP 101, 1036 (2005)]; grqc/0507032.

    Google Scholar 

  18. K. A. Bronnikov, B. E. Meierovich, and S. T. Abdyrakhmanov, Gravit. Cosmol. 12, 109 (2006).

    MathSciNet  ADS  Google Scholar 

  19. I. I. Kogan, S. Mouslopoulos, A. Papazoglou, and G. Ross, hep-th/0107086; R. Koley and S. Kar, Class. Quantum Grav. 24, 79 (2007); G. Kofinas and T. N. Tomaras, hep-th/0702010; S. Kanno and J. Soda, hep-th/0404207.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. K. Benson and I. Cho, hep-th/0104067.

  21. I. Cho and A. Vilenkin, gr-qc/9708005.

  22. Y. Brihaye and T. Delsate, Class. Quantum Grav. 24, 1279 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. M. Cline, J. Descheneau, M. Giovannini, and J. Vinet, hep-th/0304147v2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Meierovich.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, K.A., Meierovich, B.E. Global strings in extra dimensions: The full map of solutions, matter trapping, and the hierarchy problem. J. Exp. Theor. Phys. 106, 247–264 (2008). https://doi.org/10.1134/S1063776108020052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108020052

PACS numbers

Navigation