Skip to main content
Log in

Effect of micro and macro parameters in 3D modeling of grain crushing

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Coarse granular materials exhibit important grain breakage in civil engineering structures, making it more complicated to predict the settlement and collapse of structures. A three-dimensional numerical model is presented using the discrete element method (Non-Smooth Contact Dynamics method). Polyhedral grains are generated, divided into tetrahedral subgrains and glued together using a cohesive law. Samples of breakable grains are subjected to oedometric compression where grains interact via contact and friction processes. Multiple geometrical and physical parameters are tested to analyze the response on the macroscopic and microscopic scales. The tendencies found show the ability of the model to represent the real material’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Åström J, Herrmann H (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B Condens Matter Complex Syst 5(3):551–554

    Google Scholar 

  2. Azéma E, Linero S, Estrada N, Lizcano A (2017) Shear strength and microstructure of polydisperse packings: the effect of size span and shape of particle size distribution. Phys Rev E 96(2):022902

    Google Scholar 

  3. Cantor D, Azéma E, Sornay P, Radjaï F (2016) Three-dimensional bonded-cell model for grain fragmentation. Comput Particle Mech 4:1–10

    Google Scholar 

  4. Cantor D, Estrada N, Azéma E (2015) Split-cell method for grain fragmentation. Comput Geotech 67:150–156

    Google Scholar 

  5. Casini F, Viggiani G, Springman S (2013) Breakage of an artificial crushable material under loading. Granul Matter 15(5):661–673

    Google Scholar 

  6. Cavarretta I, Coop M, O’Sullivan C (2010) The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60(6):413–423

    Google Scholar 

  7. Cheng Y, Nakata Y, Bolton M (2003) Discrete element simulation of crushable soil. Géotechnique 53(7):633–641

    Google Scholar 

  8. Cho G, Dodds J, Santamarina J (2006) Particle shape effects on packing density, stiffness and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602

    Google Scholar 

  9. Ciantia MO, Arroyo M, O’Sullivan C, Gens A (2019) Micromechanical inspection of incremental behaviour of crushable soils. Acta Geotech. https://doi.org/10.1007/s11440-019-00802-0

    Article  Google Scholar 

  10. Cundall P (1988) Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116

    Google Scholar 

  11. de Bono J, McDowell G (2014) Discrete element modelling of one-dimensional compression of cemented sand. Granul Matter 16(1):79–90

    Google Scholar 

  12. de Bono J, McDowell G (2014) DEM of triaxial tests on crushable sand. Granul Matter 16(4):551–562

    Google Scholar 

  13. De Souza J (1958) Compressibility of sand at high pressure. MS thesis, Massachusetts Institute of Technology, pp 63–64

  14. Einav I (2007) Breakage mechanics—part I: theory. J Mech Phys Solids 55(6):1274–1297

    MathSciNet  MATH  Google Scholar 

  15. Estrada N (2016) Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings. Phys Rev E 94(6):062903

    Google Scholar 

  16. Frossard E, Hu W, Dano C, Hicher P (2012) Rockfill shear strength evaluation: a rational method based on size effects. Géotechnique 62(5):415–428

    Google Scholar 

  17. Griffith A (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A Math Phys Eng Sci 221:163–198

    Google Scholar 

  18. Guo P, Su X (2007) Shear strength, interparticle locking, and dilatancy of granular materials. Can Geotech J 44(5):579–591

    Google Scholar 

  19. Gupta A (2016) Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test. J Rock Mech Geotech Eng 8(3):378–388

    Google Scholar 

  20. Hardin B (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Google Scholar 

  21. Hendron A (1963) The behavior of sand in one-dimensional compression. Ph.D. thesis

  22. Hicher P, Chang C (2005) Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials. J Eng Mech 131(11):1184–1194

    Google Scholar 

  23. Jaeger J (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227

    Google Scholar 

  24. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3):235–257

    MathSciNet  MATH  Google Scholar 

  25. Jean M, Moreau J (1992) Unilaterality and dry friction in the dynamics of rigid body collections. In: Proceedings of contact mechanics international symposium, vol 1, pp 31–48. Lausanne

  26. Jia Y, Xu B, Chi S, Xiang B, Zhou Y (2017) Research on the particle breakage of rockfill materials during triaxial tests. Int J Geomech 17(10):04017085

    Google Scholar 

  27. Jiang M, Yang Z, Barreto D, Xie Y (2018) The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies. Granul Matter 20(4):80

    Google Scholar 

  28. Johannesson P, Tohlang S (2007) Lessons learned from Mohale. Int Water Power Dam Constr 59(8):16–25

    Google Scholar 

  29. Lade P, Yamamuro J, Bopp P (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316

    Google Scholar 

  30. Lee D (1992) The angles of friction of granular fills. Ph.D. thesis, University of Cambridge

  31. Li G (2013) Étude de l’influence de l’étalement granulométrique sur le comportement mécanique des matériaux granulaires. Ph.D. thesis, Ecole Centrale de Nantes

  32. Lobo-Guerrero S, Vallejo L (2005) Crushing a weak granular material: experimental numerical analyses. Géotechnique 55(3):245–249

    Google Scholar 

  33. Ma G, Regueiro RA, Zhou W, Wang Q, Liu J (2018) Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotech 13(3):601–618

    Google Scholar 

  34. Marsal R (1973) Mechanical properties of rockfill. In: Hirschfeld RC, Poulos SJ (eds) Embankment dam engineering. Casagrande volume. Wiley, New York

    Google Scholar 

  35. McDowell G, Bolton M (1998) On the micromechanics of crushable aggregates. Géotechnique 48(5):667–679

    Google Scholar 

  36. McDowell G, Bolton M, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2101

    Google Scholar 

  37. McDowell G, De Bono J (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63:895–908

    Google Scholar 

  38. Mollon G, Zhao J (2013) Generating realistic 3D sand particles using Fourier descriptors. Granul Matter 15(1):95–108

    Google Scholar 

  39. Moreau J (1988) Unilateral contact and dry friction in finite freedom dynamics. Springer, Vienna

    MATH  Google Scholar 

  40. Nader F (2017) Modélisation de la rupture 3D des grains polyédriques par éléments discrets. Ph.D. thesis, INSA Lyon

  41. Nader F, Silvani C, Djeran-Maigre I (2017) Grain breakage under uniaxial compression using a three-dimensional discrete element method. Granul Matter 19(3):53

    Google Scholar 

  42. Nakata A, Hyde M, Hyodo H (1999) A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique 49(5):567–583

    Google Scholar 

  43. Nakata Y, Hyodo M, Hyde A, Kato Y, Murata H (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82

    Google Scholar 

  44. Ovalle C, Frossard E, Dano C, Hu W, Maiolino S, Hicher P (2014) The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech 225(8):2199

    MATH  Google Scholar 

  45. Pestana J, Whittle A (1995) Compression model for cohesionless soils. Géotechnique 45(4):611–631

    Google Scholar 

  46. Potapov A, Campbell C (1996) A three-dimensional simulation of brittle solid fracture. Int J Modern Phys C 7(05):717–729

    Google Scholar 

  47. Shin H, Santamarina J (2012) Role of particle angularity on the mechanical behavior of granular mixtures. J Geotech Geoenviron Eng 139(2):353–355

    Google Scholar 

  48. Silvani C, Désoyer T, Bonelli S (2009) Discrete modelling of time-dependent rockfill behaviour. Int J Numer Anal Methods Geomech 33(5):665–685

    MATH  Google Scholar 

  49. Taforel P (2012) Apport de la méthode des éléments discrets à la modélisation des maçonneries en contexte sismique: Vers une nouvelle approche de la vulnérabilité sismique. Ph.D. thesis, Université Montpellier II-Sciences et Techniques du Languedoc

  50. Tsoungui O, Vallet D, Charmet J (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1):190–198

    Google Scholar 

  51. Varadarajan A, Sharma K, Abbas S, Dhawan A (2006) Constitutive model for rockfill materials and determination of material constants. Int J Geomech 6(4):226–237

    Google Scholar 

  52. Varadarajan A, Sharma K, Venkatachalam K, Gupta A (2003) Testing and modeling two rockfill materials. J Geotech Geoenviron Eng 129(3):206–218

    Google Scholar 

  53. Weibull W (1951) Wide applicability. J Appl Mech 18:293–297

    MATH  Google Scholar 

  54. Xiao Y, Liu H, Chen Q, Ma Q, Xiang Y, Zheng Y (2017) Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotech 12(5):1177–1184

    Google Scholar 

  55. Xiao Y, Liu H, Chen Y, Zhang W (2014) Particle size effects in granular soils under true triaxial conditions. Geotechnique 64(8):667–672

    Google Scholar 

  56. Xiao Y, Liu H, Zhang W, Liu H, Yin F, Wang Y (2016) Testing and modeling of rockfill materials: a review. J Rock Mech Geotech Eng 8(3):415–422

    Google Scholar 

  57. Xiao Y, Long L, Matthew Evans T, Zhou H, Liu H, Stuedlein A (2019) Effect of particle shape on stress-dilatancy responses of medium-dense sands. J Geotech Geoenviron Eng 145(2):04018105

    Google Scholar 

  58. Xiao Y, Meng M, Daouadji A, Chen Q, Wu Z, Jiang X (2018) Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci Front. https://doi.org/10.1016/j.gsf.2018.10.010

    Article  Google Scholar 

  59. Yan W, Dong J (2011) Effect of particle grading on the response of an idealized granular assemblage. Int J Geomech 11(4):276–285

    Google Scholar 

  60. Yang J, Luo X (2018) The critical state friction angle of granular materials: does it depend on grading? Acta Geotech 13(3):535–547

    Google Scholar 

Download references

Acknowledgements

Authors thank Guilhem Mollon of LaMCoS Lyon for the advices and fruitful discussions and Frédéric Dubois of LMGC Montpellier for the assistance in running the LMGC\(^{90}\) software. Authors also thank Christophe Pera of the University of Lyon for the technical assistance that allowed the use of the P2CHPD computation server. Authors also want to thank the editor and the reviewers for their careful reading, comments, guidance and for the relevant references given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Silvani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nader, F., Silvani, C. & Djeran-Maigre, I. Effect of micro and macro parameters in 3D modeling of grain crushing. Acta Geotech. 14, 1669–1684 (2019). https://doi.org/10.1007/s11440-019-00860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00860-4

Keywords

Navigation