Skip to main content
Log in

A two-dimensional simulation method for investigating charge transport behavior in 3-D charge trapping memory

用于研究三维电荷俘获存储器电子输运的二维模拟方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This work presents a self-consistent two-dimensional (2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the tunneling process, charge trapping/de-trapping mechanisms, and 2-D drift-diffusion transport within the storage layer. A string of three memory cells has been simulated and evaluated for different gate stack compositions and temperatures. The simulator is able to describe the charge transport behavior along bitline and tunneling directions under different operations. Good agreement has been made with experimental data, which hence validates the implemented physical models and altogether confirms the simulation as a valuable tool for evaluating the characteristics of three-dimensional NAND flash memory.

创新点

本文介绍了可用于研究三维电荷俘获存储器的二维自洽模拟方法。该方法使用了统一的物理模型, 可对电荷存储器的各个工作模拟进行模拟。该模拟方法考虑了载流子的隧穿过程、电荷俘获发射机制, 以及在电荷存储层中的二维漂移-扩散模型, 并且同时对一条位线上相邻的三个存储单元进行模拟。本文开发的模拟器同时考虑了沿位线和隧穿两个方向的电子输运, 可用来研究不同栅叠层存储器件在多种温度下的电子输运行为。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Im J W, Jeong W P, Kim D H, et al. A 128Gb 3b/cell V-NAND flash memory with 1Gb/s I/O rate. In: Proceedings of IEEE Solid-State Circuits Conference, San Francisco, 2015. 1–3

    Google Scholar 

  2. Katsumata R, Kito M, Fukuzumi, et al. Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices. In: Proceedings of Symposium on VLSI Technology, Kyoto, 2009. 136–137

    Google Scholar 

  3. Jang J, Kim H S, Cho W, et al. Vertical cell array using TCAT (terabit cell array transistor) technology for ultra high density NAND flash memory. In: Proceedings of Symposium on VLSI Technology, Kyoto, 2009. 192–193

    Google Scholar 

  4. Kim J, Hong A J, Kim S M, et al. Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density and costeffective NAND flash memory devices and SSD (solid state drive). In: Proceedings of Symposium on VLSI Technology, Kyoto, 2009. 186–187

    Google Scholar 

  5. Choi E S, Yoo H S, Joo H S, et al. A novel 3D cell array architecture for terra-bit NAND flash memory. In: Proceedings of International Memory Workshop, Monterey, 2011. 1–4

    Google Scholar 

  6. Kar G S, van den Bosch S, Cacciato A, et al. Novel bi-Layer poly-silicon channel vertical flash cell for ultrahigh density 3D SONOS NAND technology. In: Proceedings of International Memory Workshop, Monterey, 2011. 1–4

    Google Scholar 

  7. Lu C Y, Lue H T, Chen Y C. State-of-the-art flash memory devices and post-flash emerging memories. Sci China Inf Sci, 2011, 54: 1039–1060

    Article  Google Scholar 

  8. Tanaka H, Kido M, Yahashi K, et al. Bit cost scalable technology with punch and plug process for ultra high density flash memory. In: Proceedings of Symposium on VLSI Technology, Kyoto, 2007. 14–15

    Google Scholar 

  9. The International Technology Roadmap for Semiconductor (ITRS). 2013 Version. http://www.itrs2.net/2013-itrs.html

  10. Han Y L, Huo Z L, Li X K, et al. Investigation of charge loss mechanism of thickness-scalable trapping layer by variable temperature Kelvin probe force microscopy. IEEE Electron Dev Lett, 2013, 34: 870–872

    Article  Google Scholar 

  11. Padovani A, Larcher L, Heh D, et al. Modeling TANOS memory program transients to investigate charge-trapping dynamics. IEEE Electron Dev Lett, 2009, 30: 882–884

    Article  Google Scholar 

  12. Vianello E, Driussi F, Palestri P, et al. Impact of the charge transport in the conduction band on the retention of Si-nitride based memories. In: Proceedings of Solid-State Device Research Conference, Edinburgh, 2008. 107–110

    Google Scholar 

  13. Mauri A, Amoroso S M, Compagnoni C M, et al. Comprehensive numerical simulation of threshold-voltage transients in nitride memories. Solid-State Electron, 2011, 56: 23–30

    Article  Google Scholar 

  14. Maconi A, Arreghini A, Compagnoni C M, et al. Comprehensive investigation of the impact of lateral charge migration on retention performance of planar and 3D SONOS devices. Solid-State Electron, 2012. 74: 64–70

    Article  Google Scholar 

  15. Maconi A, Arreghini A, Compagnoni C M, et al. Impact of lateral charge migration on the retention performance of planar and 3D SONOS devices. In: Proceedings of Solid-State Device Research Conference, Helsinki, 2011. 195–198

    Google Scholar 

  16. Park S, Choi S, Jeon K S, et al. A 3D simulation of the lateral charge spreading effect in charge trapping NAND flash memory. In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, Denver, 2012. 376–379

    Google Scholar 

  17. Lun Z Y, Liu S H, Zhao K, et al. Two-dimensional self-consistent simulation on program/retention operation of charge trapping memory. In: Proceedings of International Workshop on Computational Electronics, Paris, 2014. 81–82

    Google Scholar 

  18. Lun Z Y, Liu S H, He Y, et al. Investigation of retention behavior for 3D charge trapping NAND flash memory by 2D self-consistent simulation. In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, Yokohama, 2014. 141–144

    Google Scholar 

  19. Shockley W, Read W T. Statistics of the recombinations of holes and electrons. Phys Rev, 1952, 87: 835–842

    Article  MATH  Google Scholar 

  20. Song Y C, Du G, Yang J F, et al. Influence of the Poole-Frenkel effect on programming and erasing in charge trapping memories. In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, Vienna, 2007. 1–4

    Google Scholar 

  21. Gehring A, Selberherr S. Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices. IEEE Trans Device Mater Reliab, 2004, 4: 306–319

    Article  Google Scholar 

  22. Scharfetter D L, Gummel H K. Large-signal analysis of a silicon Read diode oscillator. IEEE Trans Electron Dev, 1969, 16: 64–77

    Article  Google Scholar 

  23. Padovani A, Larcher L, Heh D, et al. Temperature effects on metal-alumina-nitride-oxide-silicon memory operations. Appl Phys Lett, 2010, 96: 223505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lun, Z., Du, G., Zhao, K. et al. A two-dimensional simulation method for investigating charge transport behavior in 3-D charge trapping memory. Sci. China Inf. Sci. 59, 122403 (2016). https://doi.org/10.1007/s11432-015-5475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5475-7

Keywords

关键词

Navigation