Skip to main content
Log in

Arm/trunk motion generation for humanoid robot

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper develops two motion generation methods for the upper body of humanoid robots based on compensating for the yaw moment of whole body during motion. These upper body motions can effectively solve the stability problem of feet spin for robot walk. We analyze the ground reactive torque, separate the yaw moment as the compensating object and discuss the effect of arms swinging on whole body locomotion. By taking the ZMP as the reference point, trunk spin motion and arms swinging motion are generated to improve the biped motion stability, based on compensating for the yaw moment. The methods are further compared from the energy consumption point of view. Simulated experimental results validate the performance and the feasibility of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vukobratovic M, Rodic A. Contribution to the integrated control of biped locomotion mechanisms. Int J Human Robot, 2007, 4: 49–95

    Article  Google Scholar 

  2. Park J. Impedance control for biped robot locomotion. IEEE Trans Robot Autom, 2001, 17: 1–6

    Article  Google Scholar 

  3. Hirai K, Hirose M, Haikawa Y, et al. The development of Honda humanoid robot. In: International Conference on Robotics and Automation. Leuven, Belgium, 1998. 1321–1326

  4. Hurmuzlu Y, Genot F, Brogliato B. Modeling, stability and control of biped robots-a general framework. Automatica, 2004, 40: 1647–1664

    Article  MATH  MathSciNet  Google Scholar 

  5. Vukobratovic M, Borovac B. Zero-moment point-thirty five years of its life. Int J Human Robot, 2004, 1: 157–173

    Article  Google Scholar 

  6. Kajita S, Fumio K. Biped walking pattern generation by using preview control of zero-moment point. In: International Conference on Robotics and Automation. Taipei, Taiwan, 2003. 1620–1626

  7. Kajita S, Kanehiro F. Biped walking pattern generation by a simple three-dimensional inverted pendulum model. Adv Robot, 2003, 17: 131–147

    Article  Google Scholar 

  8. Westervelt E R, Grizzle J W, Koditschek D E. Hybrid zero dynamics of planar biped walkers. IEEE Trans Automat Contr, 2003, 48: 42–56

    Article  MathSciNet  Google Scholar 

  9. Chevallereau C, Abba G. RABBIT: a testbed for advanced control theory. IEEE Contr Syst Mag, 2003, 23: 57–79

    Article  Google Scholar 

  10. Sentis L, Khatib O. Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int J Human Robot, 2005, 2: 505–518

    Article  Google Scholar 

  11. Arisumi H, Chardonnet J, Kheddar A, et al. Dynamic lifting motion of humanoid robots. In: International Conference on Robotics and Automation. Roma, Italy, 2007. 10–14

  12. Motoi N, Ikebe M, Ohnishi K. Real-time gait planning for pushing motion of humanoid robot. IEEE Trans Ind Informat, 2007, 3: 154–163

    Article  Google Scholar 

  13. Yamaguchi J, Takanishi A, Kato I. Development of a biped walking robot compensating for three-axis moment by trunk motion. In: International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993. 561–566

  14. Yamaguchi J, Soga E, Inoue S, et al. Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking. In: International Conference on Robotics and Automation. Detroit, America, 1999. 368–374

  15. Lim H, Hyon S, Setiawan S A, et al. Quasi-human biped walking. Robotica, 2006, 24: 257–268

    Article  Google Scholar 

  16. Kim Y, Lee B, Yoo J, et al. Humanoid robot hansaram: yawing moment cancellation and ZMP compensation. In: AUS-International Symposium on Mechatronics, Sharjah, United Arab Emirates, 2005

  17. Ueda J, Shirase K, Matsumoto Y, et al. Momentum compensation for fast dynamic walking of humanoids based on pelvic rotation of contact sport athletes. In: International Conference on humanoid robots. Santa Monica, America, 2004. 592–607

  18. Kajita S, Kanehiro F. Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In: International Conference Intelligent Robots and Systems. Las Vegas, America, 2003. 1644–1650

  19. Kajita S, Nagasaki T, Kaneko K, et al. ZMP-based biped running control. IEEE Robot Autom Mag, 2007. 14: 2–11

    Article  Google Scholar 

  20. Hirukawa H, Hattori S. A pattern generator of humanoid robots walking on a rough terrain. In: International Conference on Robotics and Automation. Roma, Italy, 2007. 10–14

  21. Huang Q, Yokoi K. Planning walking patterns for a biped robot. IEEE Trans Robot Autom, 2001, 17: 280–289

    Article  Google Scholar 

  22. Paul R P, Shimano B, Mayer G E. Kinematic control equations for simple manipulators. IEEE Trans Syst Man Cybern, 1981, 11: 449–460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DengPeng Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, D., Su, J. Arm/trunk motion generation for humanoid robot. Sci. China Inf. Sci. 53, 1603–1612 (2010). https://doi.org/10.1007/s11432-010-4025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4025-6

Keywords

Navigation