Skip to main content
Log in

Linking leaf elemental traits to biomass across forest biomes in the Himalayas

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Plants require a number of essential elements in different proportions for ensuring their growth and development. The elemental concentrations in leaves reflect the functions and adaptations of plants under specific environmental conditions. However, less is known about how the spectrum of leaf elements associated with resource acquisition, photosynthesis and growth regulates forest biomass along broad elevational gradients. We examined the influence of leaf element distribution and diversity on forest biomass by analyzing ten elements (C, N, P, K, Ca, Mg, Zn, Fe, Cu, and Mn) in tree communities situated every 100 meters along an extensive elevation gradient, ranging from the tropical forest (80 meters above sea level) to the alpine treeline (4200 meters above sea level) in the Kangchenjunga Landscape in eastern Nepal Himalayas. We calculated community-weighted averages (reflecting dominant traits governing biomass, i.e., mass-ratio effect) and functional divergence (reflecting increased trait variety, i.e., complementarity effect) for leaf elements in a total of 1,859 trees representing 116 species. An increasing mass-ratio effect and decreasing complementarity in leaf elements enhance forest biomass accumulation. A combination of elements together with elevation explains biomass (52.2% of the variance) better than individual elemental trait diversity (0.05% to 21% of the variance). Elevation modulates trait diversity among plant species in biomass accumulation. Complementarity promotes biomass at lower elevations, but reduces biomass at higher elevations, demonstrating an interaction between elevation and complementarity. The interaction between elevation and mass-ratio effect produces heterogeneous effects on biomass along the elevation gradient. Our research indicates that biomass accumulation can be disproportionately affected by elevation due to interactions among trait diversities across vegetation zones. While higher trait variation enhances the adaptation of species to environmental changes, it reduces biomass accumulation, especially at higher elevations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren G I. 2008. Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst, 39: 153–170

    Article  Google Scholar 

  • Ali A, Yan E R, Chang S X, Cheng J Y, Liu X Y. 2017. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ, 574: 654–662

    Article  CAS  Google Scholar 

  • Barry K E, Mommer L, van Ruijven J, Wirth C, Wright A J, Bai Y, Connolly J, De Deyn G B, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A. 2019. The future of complementarity: Disentangling causes from consequences. Trends Ecol Evol, 34: 167–180

    Article  Google Scholar 

  • Baxter I, Dilkes B P. 2012. Elemental profiles reflect plant adaptations to the environment. Science, 336: 1661–1663

    Article  CAS  Google Scholar 

  • Callaway R M, Brooker R W, Choler P, Kikvidze Z, Lortie C J, Michalet R, Paolini L, Pugnaire F I, Newingham B, Aschehoug E T, Armas C, Kikodze D, Cook B J. 2002. Positive interactions among alpine plants increase with stress. Nature, 417: 844–848

    Article  CAS  Google Scholar 

  • Chalmandrier L, Münkemüller T, Colace M P, Renaud J, Aubert S, Carlson B Z, Clément J C, Legay N, Pellet G, Saillard A, Lavergne S, Thuiller W, Avolio M. 2017. Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J Ecol, 105: 277–287

    Article  Google Scholar 

  • Chaudhary R P, Uprety Y, Joshi S P, Shrestha K K, Basnet K B, Basnet G, Shrestha K R, Bhatta K P, Acharya K P, Chettri N. 2015. Kangchenjunga landscape Nepal: From conservation and development perspectives. Kathmandu: Ministry of Forests and Soil Conservation (MoFSC), Government of Nepal, Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, International Centre for Integrated Mountain Development (ICIMOD)

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns M A, Chambers J Q, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Riéra B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87–99

    Article  CAS  Google Scholar 

  • Chen A, Peng S, Fei S. 2019. Mapping global forest biomass and its changes over the first decade of the 21st century. Sci China Earth Sci, 62: 585–594

    Article  CAS  Google Scholar 

  • Chen X, Wang M, Li M, Sun J, Lyu M, Zhong Q L. 2020. Convergent nitrogen-phosphorus scaling relationships in different plant organs along an elevational gradient. AoB Plants, 12: plaa021

    Article  CAS  Google Scholar 

  • Chiang J M, Spasojevic M J, Muller-Landau H C, Sun I F, Lin Y, Su S H, Chen Z S, Chen C T, Swenson N G, McEwan R W. 2016. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia, 182: 829–840

    Article  Google Scholar 

  • Conti G, Díaz S. 2013. Plant functional diversity and carbon storage—An empirical test in semi-arid forest ecosystems. J Ecol, 101:18–28

    Article  CAS  Google Scholar 

  • Cross W F, Hood J M, Benstead J P, Huryn A D, Nelson D. 2015. Interactions between temperature and nutrients across levels of ecological organization. Glob Change Biol, 21: 1025–1040

    Article  Google Scholar 

  • DFRS. 2015. State of Nepal’s Forests. Kathmandu: Forest Resource Assessment (FRA), Department of Forest Research and Survey (DFRS)

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson T M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA, 104: 20684–20689

    Article  Google Scholar 

  • Dyola N, Sigdel S R, Liang E, Babst F, Camarero J J, Aryal S, Chettri N, Gao S, Lu X, Sun J, Wang T, Zhang G, Zhu H, Piao S, Peñuelas J. 2022. Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere, 13: e4107

    Article  Google Scholar 

  • Fay P A, Prober S M, Harpole W S, Knops J M H, Bakker J D, Borer E T, Lind E M, MacDougall A S, Seabloom E W, Wragg P D, Adler P B, Blumenthal D M, Buckley Y M, Chu C, Cleland E E, Collins S L, Davies K F, Du G, Feng X, Firn J, Gruner D S, Hagenah N, Hautier Y, Heckman R W, Jin V L, Kirkman K P, Klein J, Ladwig L M, Li Q, McCulley R L, Melbourne B A, Mitchell C E, Moore J L, Morgan J W, Risch A C, Schütz M, Stevens C J, Wedin D A, Yang L H. 2015. Grassland productivity limited by multiple nutrients. Nat Plants, 1: 15080

    Article  CAS  Google Scholar 

  • Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte M S, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona J C, Lorenzo L, Salgado Negret B, Vaz M, Poorter L. 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol, 103: 191–201

    Article  Google Scholar 

  • Fotis A T, Murphy S J, Ricart R D, Krishnadas M, Whitacre J, Wenzel J W, Queenborough S A, Comita L S. 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J Ecol, 106: 561–570

    Article  CAS  Google Scholar 

  • Gao S, Liang E, Liu R, Babst F, Camarero J J, Fu Y H, Piao S, Rossi S, Shen M, Wang T, Peñuelas J. 2022. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat Ecol Evol, 6: 397–404

    Article  Google Scholar 

  • García-Palacios P, Shaw E A, Wall D H, Hättenschwiler S. 2017. Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. J Ecol, 105: 968–978

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85: 2630–2637

    Article  Google Scholar 

  • Godoy O, Gómez-Aparicio L, Matías L, Pérez-Ramos I M, Allan E. 2020. An excess of niche differences maximizes ecosystem functioning. Nat Commun, 11: 4180

    Article  Google Scholar 

  • Grime J P. 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J Ecol, 86: 902–910

    Article  Google Scholar 

  • Han W X, Fang J Y, Reich P B, Ian Woodward F, Wang Z H. 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett, 14: 788–796

    Article  CAS  Google Scholar 

  • Haynes A F. 2022. What do we know about parasitic plants and the leaf economic spectrum? J Plant Ecol 15: 691–699

    Article  Google Scholar 

  • Houghton R A, Hall F, Goetz S J. 2009. Importance of biomass in the global carbon cycle. J Geophys Res, 114: G00E03

    Article  Google Scholar 

  • Kalra Y P. 1998. Handbook of Reference Methods for Plant Analysis. Boca Raton: CRC Press, Taylor & Francis Group

    Google Scholar 

  • Li X, Liang E, Camarero J J, Rossi S, Zhang J, Zhu H, Fu Y H, Sun J, Wang T, Piao S, Peñuelas J. 2023. Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. Natl Sci Rev, 10: nwad182

    Article  CAS  Google Scholar 

  • Li Y, Jiang Y, Shipley B, Li B, Luo W, Chen Y, Zhao K, He D, Rodríguez-Hernández D I, Chu C. 2021. The complexity of trait-environment performance landscapes in a local subtropical forest. New Phytol, 229: 1388–1397

    Article  Google Scholar 

  • Li Y, Reich P B, Schmid B, Shrestha N, Feng X, Lyu T, Maitner B S, Xu X, Li Y, Zou D, Tan Z H, Su X, Tang Z, Guo Q, Feng X, Enquist B J, Wang Z. 2020. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol Lett, 23: 1003–1013

    Article  Google Scholar 

  • Maharjan S K, Sterck F J, Dhakal B P, Makri M, Poorter L. 2021. Functional traits shape tree species distribution in the Himalayas. J Ecol, 109: 3818–3834

    Article  Google Scholar 

  • Malhi Y, Girardin C A J, Goldsmith G R, Doughty C E, Salinas N, Metcalfe D B, Huaraca Huasco W, Silva-Espejo J E, del Aguilla-Pasquell J, Farfán Amézquita F, Aragão L E O C, Guerrieri R, Ishida F Y, Bahar N H A, Farfan-Rios W, Phillips O L, Meir P, Silman M. 2016. The variation of productivity and its allocation along a tropical elevation gradient: A whole carbon budget perspective. New Phytol, 214: 1019–1032

    Article  Google Scholar 

  • Marschner P. 2012. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. New York: Academic Press

    Google Scholar 

  • Mason N W H, MacGillivray K, Steel J B, Wilson J B. 2003. An index of functional diversity. J Vegetation Sci, 14: 571–578

    Article  Google Scholar 

  • Mazerolle M J. 2020. AICcmodavg: Model Selection and Multimodel Inference based on (Q)AIC(c)

  • Mokany K, Raison R J, Prokushkin A S. 2006. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob Change Biol, 12: 84–96

    Article  Google Scholar 

  • MPFS. 1989. Master Plan for the Forestry Sector (MPFS). Kathmandu: Ministry of Forests and Soil Conservation, Government of Nepal

    Google Scholar 

  • Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, Vicca S, Janssens I A, Sardans J. 2019. The bioelements, the elementome, and the biogeochemical niche. Ecology, 100: e02652

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M S, Cornwell W K, Craine J M, Gurvich D E, Urcelay C, Veneklaas E J, Reich P B, Poorter L, Wright I J, Ray P, Enrico L, Pausas J G, de Vos A C, Buchmann N, Funes G, Quétier F, Hodgson J G, Thompson K, Morgan H D, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti M V, Conti G, Staver A C, Aquino S, Cornelissen J H C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot, 61: 167

    Article  Google Scholar 

  • Piao S L, He Y, Wang X H, Chen F H. 2022. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospect. Sci China Earth Sci, 65: 641–651

    Article  Google Scholar 

  • Poorter L, van der Sande M T, Thompson J, Arets E J M M, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho F A, Casanoves F, Cornejo-Tenorio G, Costa F R C, de Castilho C V, Duivenvoorden J F, Dutrieux L P, Enquist B J, Fernández-Méndez F, Finegan B, Gormley L H L, Healey J R, Hoosbeek M R, Ibarra-Manríquez G, Junqueira A B, Levis C, Licona J C, Lisboa L S, Magnusson W E, Martínez-Ramos M, Martínez-Yrizar A, Martorano L G, Maskell L C, Mazzei L, Meave J A, Mora F, Muñoz R, Nytch C, Pansonato M P, Parr T W, Paz H, Pérez-García E A, Rentería L Y, Rodríguez-Velazquez J, Rozendaal D M A, Ruschel A R, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair F L, Souza P F, Souza F C, Stropp J, ter Steege H, Swenson N G, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M. 2015. Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr, 24: 1314–1328

    Article  Google Scholar 

  • R Development Core Team. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Read Q D, Moorhead L C, Swenson N G, Bailey J K, Sanders N J. 2014. Convergent effects of elevation on functional leaf traits within and among species. Funct Ecol, 28: 37–45

    Google Scholar 

  • Reich P B, Walters M B, Ellsworth D S. 1997. From tropics to tundra: Global convergence in plant functioning. Proc Natl Acad Sci USA, 94: 13730–13734

    Article  CAS  Google Scholar 

  • Sardans J, Grau O, Chen H Y H, Janssens I A, Ciais P, Piao S, Peñuelas J. 2017. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob Change Biol, 23: 3849–3856

    Article  Google Scholar 

  • Sharma E, Pukkala T. 1990. Volume Equations and Biomass Prediction of Forest Trees in Nepal. Kathmandu: Forest Survey and Statistics Division

    Google Scholar 

  • Sigdel S R, Liang E, Rokaya M B, Rai S, Dyola N, Sun J, Zhang L, Zhu H, Chettri N, Chaudhary R P, Camarero J J, Peñuelas J. 2023. Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas. Funct Ecol, 37: 383–394

    Article  CAS  Google Scholar 

  • Sobral M, Schleuning M, Martínez Cortizas A. 2023. Trait diversity shapes the carbon cycle. Trends Ecol Evol, 38: 602–604

    Article  Google Scholar 

  • Sun L, Sun J, Wu J X, Du Z Y, Chen Y J, Wang Y, Liu M, Li W C, Liang E Y. 2023. Plant community traits and functions mediate the biomass trade-off of alpine grasslands along precipitation gradients on the Tibetan Plateau. J Plant Ecol, 16: 0–rtad009

    Article  Google Scholar 

  • Tilman D, Lehman C L, Thomson K T. 1997. Plant diversity and ecosystem productivity: Theoretical considerations. Proc Natl Acad Sci USA, 94: 1857–1861

    Article  CAS  Google Scholar 

  • Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163: 414–431

    Article  Google Scholar 

  • Urgoiti J, Messier C, Keeton W S, Reich P B, Gravel D, Paquette A. 2022. No complementarity no gain—Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol Lett, 25: 851–862

    Article  Google Scholar 

  • Vetaas O R, Paudel K P, Christensen M. 2019. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J Biogeogr, 46: 1652–1663

    Article  Google Scholar 

  • Vieilledent G, Fischer F J, Chave J, Guibal D, Langbour P, Gérard J. 2018. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am J Bot, 105: 1653–1661

    Article  Google Scholar 

  • Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos, 116: 882–892

    Article  Google Scholar 

  • Wang H, Wang R, Harrison S P, Prentice I C. 2022. Leaf morphological traits as adaptations to multiple climate gradients. J Ecol, 110: 1344–1355

    Article  Google Scholar 

  • Wang T, Wang X, Liu D, Lv G, Ren S, Ding J, Chen B, Qu J, Wang Y, Piao S, Chen F. 2023. The current and future of terrestrial carbon balance over the Tibetan Plateau. Sci China Earth Sci, 66: 1493–1503

    Article  CAS  Google Scholar 

  • Wood S N. 2017. Generalized Additive Models: An Introduction with R. Boca Raton: Chapman and Hall/CRC

    Book  Google Scholar 

  • Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets Ul, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. 2004. The worldwide leaf economics spectrum. Nature, 428: 821–827

    Article  CAS  Google Scholar 

  • Wu X, Wang X., Tang Z, Shen Z, Zheng C, Xia X, Fang J. 2015. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38: 602–613

    Article  CAS  Google Scholar 

  • Xu Z, Li M H, Zimmermann N E, Li S P, Li H, Ren H, Sun H, Han X, Jiang Y, Jiang L. 2018. Plant functional diversity modulates global environmental change effects on grassland productivity. J Ecol, 106: 1941–1951

    Article  Google Scholar 

  • Xue Y, Tanaka K R, Yu H, Chen Y, Guan L, Li Z, Yu H, Xu B, Ren Y, Wan R. 2018. Using a new framework of two-phase generalized additive models to incorporate prey abundance in spatial distribution models of juvenile slender lizardfish in Haizhou Bay, China. Mar Biol Res, 14: 508–523

    Article  Google Scholar 

  • Yang Y, Yi Y, Wang W, Zhou Y, Yang Z. 2020. Generalized additive models for biomass simulation of submerged macrophytes in a shallow lake. Sci Total Environ, 711: 135108

    Article  CAS  Google Scholar 

  • Zanne A E, Gabriela L G, David C, Ilic J, Steven J, Simon L, Miller R B, Nathan S, Wiemann M C, Chave J. 2009. Data from: Towards A Worldwide Wood Economics Spectrum. Dryad Dataset, https://doi.org/10.5061/dryad.234

  • Zhang L, Liu X, Sun Z, Bu W, Bongers F J, Song X, Yang J, Sun Z, Li Y, Li S, Cao M, Ma K, Swenson N G. 2022. Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in Southwest China. Sci China Life Sci, 66: 376–384

    Article  Google Scholar 

  • Zhao W Z, Xiao C W, Li M X, Xu L, He N P. 2022. Variation and adaptation in leaf sulfur content across China. J Plant Ecol, 15: 743–755

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 42030508) and the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0301). Nita Dyola was supported by CAS-TWAS President’s Fellowship Program for International Ph.D. students. Josep Peñuelas was supported by Spanish Government (Grant Nos. PID2019-110521GB-I00 and TED2021-132627B-I00), the Catalan Government (Grant No. SGR 2017-1005) and the Fundación “Ramón Areces” (Grant No. CIV-P20A6621). J. Julio Camarero was supported by the Spanish Government (Grant No. RTI2018-096884-B-C31). The Department of National Parks and Wildlife Conservation, Government of Nepal, is especially acknowledged for granting research permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eryuan Liang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyola, N., Liang, E., Peñuelas, J. et al. Linking leaf elemental traits to biomass across forest biomes in the Himalayas. Sci. China Earth Sci. 67, 1518–1528 (2024). https://doi.org/10.1007/s11430-023-1271-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1271-4

Keywords

Navigation