Skip to main content
Log in

A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Osteoporosis is a highly heritable common bone disease leading to fractures that severely impair the life quality of patients. Wrist fractures caused by osteoporosis are largely due to the scarcity of wrist bone mass. Here we report the results of a genome-wide association study (GWAS) of wrist bone mineral density (BMD). We examined ∼500000 SNP markers in 1000 unrelated homogeneous Caucasian subjects and found a novel allelic association with wrist BMD at rs11023787 in the SOX6 (SRY (sex determining region Y)-box 6) gene (P=9.00×10−5). Subjects carrying the C allele of rs11023787 in SOX6 had significantly higher mean wrist BMD values than those with the T allele (0.485:0.462 g cm−2 for C allele vs. T allele carriers). For validation, we performed SOX6 association for BMD in an independent Chinese sample and found that SNP rs11023787 was significantly associated with wrist BMD in the Chinese sample (P=6.41×10−3). Meta-analyses of the GWAS scan and the replication studies yielded P-values of 5.20×10−6 for rs11023787. Results of this study, together with the functional relevance of SOX6 in cartilage formation, support the SOX6 gene as an important gene for BMD variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ray N F, Chan J K, Thamer M, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res, 1997, 12: 24–35 1:STN:280:DyaK2szot1Oguw%3D%3D, 10.1359/jbmr.1997.12.1.24, 9240722

    Article  PubMed  CAS  Google Scholar 

  2. Public Health Service Office of the Surgeon General Public Health Service Office of the Surgeon General. 2004

  3. Ioannidis G, Gordon M, Adachi J D. Quality of life in osteoporosis. Nurs Clin North Am, 2001, 36: 481–489 1:STN:280:DC%2BD3MvptFSgtA%3D%3D, 11532662

    PubMed  CAS  Google Scholar 

  4. Schousboe J T, Fink H A, Taylor B C, et al. Association between self-reported prior wrist fractures and risk of subsequent hip and radiographic vertebral fractures in older women: a prospective study. J Bone Miner Res, 2005, 20: 100–106 10.1359/JBMR.041025, 15619675

    Article  PubMed  Google Scholar 

  5. Niu T, Rosen C J. The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene, 2005, 361: 38–56 1:CAS:528:DC%2BD2MXhtFGhsbjJ, 10.1016/j.gene.2005.07.016, 16183214

    Article  PubMed  CAS  Google Scholar 

  6. Deng H W, Xu F H, Huang Q Y, et al. A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J Clin Endocrinol Metab, 2002, 87: 5151–5159 1:CAS:528:DC%2BD38Xos1ynt7s%3D, 10.1210/jc.2002-020474, 12414886

    Article  PubMed  CAS  Google Scholar 

  7. Shen H, Zhang Y Y, Long J R, et al. A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Xq27. J Med Genet, 2004, 41: 743–751 1:CAS:528:DC%2BD2cXpsl2gsbk%3D, 10.1136/jmg.2004.020396, 15466007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ralston S H, Galwey N, MacKay I, et al. Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet, 2005, 14: 943–951 1:CAS:528:DC%2BD2MXis1yjt7Y%3D, 10.1093/hmg/ddi088, 15746152

    Article  PubMed  CAS  Google Scholar 

  9. Peacock M, Koller D L, Fishburn T, et al. Sex-specific and non-sex-specific quantitative trait loci contribute to normal variation in bone mineral density in men. J Clin Endocrinol Metab, 2005, 90: 3060–3066 1:CAS:528:DC%2BD2MXkt1Wgurg%3D, 10.1210/jc.2004-2143, 15741260

    Article  PubMed  CAS  Google Scholar 

  10. Shen H, Liu Y, Liu P, et al. Nonreplication in genetic studies of complex diseases-lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res, 2005, 20: 365–376 1:CAS:528:DC%2BD2MXis1Kntbs%3D, 10.1359/JBMR.041129, 15746981

    Article  PubMed  CAS  Google Scholar 

  11. Thakkinstian A, D’Este C, Eisman J, et al. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res, 2004, 19: 419–428 1:CAS:528:DC%2BD2cXisFCrsb0%3D, 10.1359/JBMR.0301265, 15040830

    Article  PubMed  CAS  Google Scholar 

  12. Macdonald H M, McGuigan F E, Stewart A, et al. Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res, 2006, 21: 151–162 1:CAS:528:DC%2BD28Xpt1SmsA%3D%3D, 10.1359/JBMR.050906, 16355284

    Article  PubMed  CAS  Google Scholar 

  13. Ralston S H, Uitterlinden A G, Brandi M L, et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS, 2006, 14: 943–951

    Google Scholar 

  14. Hirschhorn J N, Daly M J. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet, 2005, 6: 95–108 1:CAS:528:DC%2BD2MXhtFyjsr8%3D, 10.1038/nrg1521, 15716906

    Article  PubMed  CAS  Google Scholar 

  15. Ahn S J, Costa J, Emanuel J R. PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Res, 1996, 24: 2623–2625 1:CAS:528:DyaK28XksVyjt7o%3D, 10.1093/nar/24.13.2623, 8692708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Singer V L, Jones L J, Yue S T, et al. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem, 1997, 249: 228–238 1:CAS:528:DyaK2sXktF2rsbo%3D, 10.1006/abio.1997.2177, 9212875

    Article  PubMed  CAS  Google Scholar 

  17. Di X, Matsuzaki H, Webster T A, et al. Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics, 2005, 21: 1958–1963 1:CAS:528:DC%2BD2MXjsl2nsLc%3D, 10.1093/bioinformatics/bti275, 15657097

    Article  PubMed  CAS  Google Scholar 

  18. Rabbee N, Speed T P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics, 2005, 22: 7–12 10.1093/bioinformatics/bti741, 16267090

    Article  PubMed  Google Scholar 

  19. Zaykin D V, Westfall P H, Young S S, et al. Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered, 2002, 53: 79–91 10.1159/000057986, 12037407

    Article  PubMed  Google Scholar 

  20. Weir B. Genetic Data Analysis III. Sunderland: Sinauer Associates, 2007

    Google Scholar 

  21. Price A L, Patterson N J, Plenge R M, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904–909 1:CAS:528:DC%2BD28XnsVCgsrg%3D, 10.1038/ng1847, 16862161

    Article  PubMed  CAS  Google Scholar 

  22. Barrett J C, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263–265 1:CAS:528:DC%2BD2MXkt1WitQ%3D%3D, 10.1093/bioinformatics/bth457, 15297300

    Article  PubMed  CAS  Google Scholar 

  23. Yuan H Y, Chiou J J, Tseng W H, et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res, 2006, 34: W635–W641 1:CAS:528:DC%2BD28Xps1yhs7c%3D, 10.1093/nar/gkl236, 16845089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Whitlock M C. Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol, 2005, 18: 1368–1373 1:STN:280:DC%2BD2Mvmsl2hug%3D%3D, 10.1111/j.1420-9101.2005.00917.x, 16135132

    Article  PubMed  CAS  Google Scholar 

  25. Loannidis J P, Ng M Y, Sham P C, et al. Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res, 2007, 22: 173–83 10.1359/jbmr.060806

    Article  Google Scholar 

  26. Vidal C, Galea R, Brincat M, et al. Linkage to chromosome 11p12 in two Maltese families with a highly penetrant form of osteoporosis. Eur J Hum Genet, 2007, 15: 800–809 1:CAS:528:DC%2BD2sXmslSrsbk%3D, 10.1038/sj.ejhg.5201814, 17377523

    Article  PubMed  CAS  Google Scholar 

  27. Pevny L H, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev, 1997, 7: 338–344 1:CAS:528:DyaK2sXksVyntr8%3D, 10.1016/S0959-437X(97)80147-5, 9229109

    Article  PubMed  CAS  Google Scholar 

  28. Lefebvre V, Li P, de C B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J, 1998, 17: 5718–5733 1:CAS:528:DyaK1cXmvVyjsLs%3D, 10.1093/emboj/17.19.5718, 9755172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. De C B, Lefebvre V, Behringer R R, et al. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol, 2000, 19: 389–394 10.1016/S0945-053X(00)00094-9

    Article  Google Scholar 

  30. Lefebvre V, Behringer R R, {fnde} C B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage, 2001, 9: S69–S75 10.1053/joca.2001.0447, 11680692

    Article  PubMed  Google Scholar 

  31. Uusitalo H, Hiltunen A, Ahonen M, et al. Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res, 2001, 16: 1837–1845 1:CAS:528:DC%2BD3MXnsVKqtL8%3D, 10.1359/jbmr.2001.16.10.1837, 11585348

    Article  PubMed  CAS  Google Scholar 

  32. Smits P, Li P, Mandel J, et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell, 2001, 1: 277–290 1:CAS:528:DC%2BD3MXntVGrsLs%3D, 10.1016/S1534-5807(01)00003-X, 11702786

    Article  PubMed  CAS  Google Scholar 

  33. Woods A, Wang G, Dupuis H, et al. Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation and chondrogenesis. J Biol Chem, 2007, 282: 23500–23508 1:CAS:528:DC%2BD2sXosVyrtrY%3D, 10.1074/jbc.M700680200, 17573353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongWen Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Liu, R., Lei, S. et al. A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass. Sci. China Life Sci. 53, 1065–1072 (2010). https://doi.org/10.1007/s11427-010-4056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4056-7

Keywords

Navigation