Skip to main content

Advertisement

Log in

Innovations in textile wastewater management: a review of zero liquid discharge technology

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zero liquid discharge (ZLD) technology emerges as a transformative solution for sustainable wastewater management in the textile industry, emphasizing water recycling and discharge minimization. This review comprehensively explores ZLD’s pivotal role in reshaping wastewater management practices within the textile sector. With a primary focus on water recycling and minimized discharge, the review thoroughly examines the economic and environmental dimensions of ZLD. Additionally, it includes a comparative cost analysis against conventional wastewater treatment methods and offers a comprehensive outlook on the global ZLD market. Presently valued at US $0.71 billion, the market is anticipated to reach US $1.76 billion by 2026, reflecting a robust annual growth rate of 12.6%. Despite ZLD’s efficiency in wastewater recovery, environmental challenges, such as heightened greenhouse gas emissions, increased carbon footprint, elevated energy consumption, and chemical usage, are discussed. Methodologies employed in this review involve an extensive analysis of existing literature, empirical data, and case studies on ZLD implementation in the textile industry worldwide. While acknowledging existing adoption barriers, the review underscores ZLD’s potential to guide the textile industry toward a more sustainable and environmentally responsible future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd Jelil R (2018) Review of artificial intelligence applications in garment manufacturing BT - artificial intelligence for fashion industry in the big data era. Thomassey S, Zeng X (eds.), Springer, Singapore, pp 97–123. https://doi.org/10.1007/978-981-13-0080-6_6

  • Ahmed FE, Khalil A, Hilal N (2021) Emerging desalination technologies: current status, challenges and future trends. Desalination 517:115183

    Article  CAS  Google Scholar 

  • Aksenov VI, Arkhipova OA, Sidorova IA, Nichkova II (2005) Organizational problems of water handing facilities at metallurgical enterprises. Cтaль 8:96–98

    Google Scholar 

  • Akyildiz SH, Sezgin H, Yalcin B, Yalcin-Enis I (2023) Optimization of the textile wastewater pretreatment process in terms of organics removal and microplastic detection. J Clean Prod 384:135637

    Article  CAS  Google Scholar 

  • Ali NS, Kalash KR, Ahmed AN, Albayati TM (2022) Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling. Sci Rep 12(1):16782. https://doi.org/10.1038/s41598-022-20984-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Amutha K (2017) Sustainable chemical management and zero discharges. Sustainable Fibres and Textiles 347–366. https://doi.org/10.1016/B978-0-08-102041-8.00012-3

  • Anon (1992) Verordnung über die Begrenzung von Abwasseremissionen aus Textilbe-trieben 2/14., BGBL 1992/612, Regulation of the Ministry of Agriculture and Forestry: Austria

  • Arslan S, Eyvaz M, Gürbulak E, Yüksel E (2016) A review of state-of-the-art technologies in dye-containing wastewater treatment–the textile industry case. Textile wastewater treatment 1–29

  • Atia AA, Yip NY, Fthenakis V (2021) Pathways for minimal and zero liquid discharge with enhanced reverse osmosis technologies: module-scale modeling and techno-economic assessment. Desalination 509:115069. https://doi.org/10.1016/J.DESAL.2021.115069

    Article  CAS  Google Scholar 

  • Babu BR, Parande AK, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    CAS  Google Scholar 

  • Bahadur N, Bhargava N (2019) Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. J Water Process Eng 32:100934. https://doi.org/10.1016/J.JWPE.2019.100934

    Article  Google Scholar 

  • Basile A, Cassano A, Rastogi NK, editors (2015) Advances in membrane technologies for water treatment: materials, processes and applications, Elsevier

  • Becker M, Edwards S, Massey RI (2010) Toxic chemicals in toys and children’s products: limitations of current responses and recommendations for government and industry. Environ Sci Technol 44(21):7986–7991. https://doi.org/10.1021/ES1009407/ASSET/IMAGES/LARGE/ES-2010-009407_0002.JPEG

    Article  ADS  CAS  PubMed  Google Scholar 

  • Behera M, Nayak J, Banerjee S, Chakrabortty S, Tripathy SK (2021) A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J Environ Chem Eng 9(4):105277

    Article  CAS  Google Scholar 

  • Bello IA (2017) Challenges in textile wastewater and current palliative methods: an overview. IIUM Eng J 18(2):71–78

    Article  Google Scholar 

  • Bidu JM, Van der Bruggen B, Rwiza MJ, Njau KN (2021) Current status of textile wastewater management practices and effluent characteristics in Tanzania. Water Sci Technol 83(10):2363–2376

    Article  CAS  PubMed  Google Scholar 

  • Bisschops I, Spanjers H (2003) Literature review on textile wastewater characterisation. Environ Technol 24(11):1399–1411

    Article  CAS  PubMed  Google Scholar 

  • Bonciu F (2014) The European economy: from a linear to a circular economy. Romanian J Eur Aff 14(4):78–91. https://doaj.org/article/14f3b5f27814475f9d92435ba6ad9a5f

  • Carmen Z, Daniela S (2012) Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview. Rijeka: IntechOpen 3:55–86

  • Central Pollution Control Board, India (2017) Ministry of Environment and Forests, Government of India. http://cpcb.nic.in/industry-effluent-standards/ (Accessed 13th August 2023)

  • Chang RH, Peng YT, Choi S, Cai C (2022) Applying artificial intelligence (AI) to improve fire response activities. Emerg Manag Sci Technol 2(1):1–6

    Article  Google Scholar 

  • Ćurić I, Dolar D (2022) Investigation of pretreatment of textile wastewater for membrane processes and reuse for washing dyeing machines. Membranes 12(5):449

    Article  PubMed  PubMed Central  Google Scholar 

  • Czarnecka-Operacz M, Jenerowicz D, Szulczyńska-Gabor J, Teresiak-Mikołajczak E, Szyfter-Harris J, Bowszyc-Dmochowska M (2016) Vesicular contact reaction may progress into erythema multiforme. Acta Dermatovenerologica Croatica : ADC 24(4):307–309

    PubMed  Google Scholar 

  • da Cesar Silva P, de Cardoso Oliveira Neto G, Ferreira Correia JM, Pujol Tucci HN (2021) Evaluation of economic, environmental and operational performance of the adoption of cleaner production: survey in large textile industries. J Clean Prod 278:123855. https://doi.org/10.1016/J.JCLEPRO.2020.123855

    Article  Google Scholar 

  • Date M, Patyal V, Jaspal D, Malviya A, Khare K (2022) Zero liquid discharge technology for recovery, reuse, and reclamation of wastewater: a critical review. J Water Process Eng 49:103129

    Article  Google Scholar 

  • Dublin (2021) (GLOBE NEWSWIRE) -- The “zero liquid discharge systems (ZLD) market - global outlook & forecast 2021–2026” Available online https://www.globenewswire.com/en/news-release/2021/09/21/2300300/28124/en/Global-Zero-Liquid-Discharge-Systems-ZLD-Market-Report-2021-2026-Featuring-Major-Players-Aquatech-International-GEA-H2O-SUEZ-Veolia.html. Assessed on April 26, 2023

  • Dutta S, Gupta RS, Pathan S, Bose S (2023) Interpenetrating polymer networks for desalination and water remediation: a comprehensive review of research trends and prospects. RSC Adv 13(9):6087–6107

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Elahee MK (2001) Energy management: optimisation of the use of steam in the textile industry in Mauritius (Doctoral dissertation, PhD thesis, Faculty of Engineering, University of Mauritius)

  • Elmas ÖF, Akdeniz N, Atasoy M, Karadag AS (2020) Contact dermatitis: a great imitator. Clin Dermatol 38(2):176–192. https://doi.org/10.1016/j.clindermatol.2019.10.003

    Article  PubMed  Google Scholar 

  • Farzanehsa M, Vaughan LC, Zamyadi A, Khan SJ (2023) Comparison of UV-Cl and UV-H2O2 advanced oxidation processes in the degradation of contaminants from water and wastewater: a review. Water Environ J n/a(n/a):1–11. https://doi.org/10.1111/wej.12868

  • Fortune Business Insights (2020) Fortune Business InsightsTM | Global Market Research Reports & Consulting. https://www.fortunebusinessinsights.com/

  • Fu Y, Viraraghavan T (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7(1):239–247

    Article  CAS  Google Scholar 

  • Gasmi A, Ibrahimi S, Elboughdiri N, Tekaya MA, Ghernaout D, Hannachi A, Mesloub A, Ayadi B, Kolsi L (2022) Comparative study of chemical coagulation and electrocoagulation for the treatment of real textile wastewater: optimization and operating cost estimation. ACS Omega 7(26):22456–22476. https://doi.org/10.1021/ACSOMEGA.2C01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens A, Aerts O (2022) Contact allergy to and allergic contact dermatitis from formaldehyde and formaldehyde releasers: a clinical review and update. Contact Dermatitis 87(1):20–27. https://doi.org/10.1111/cod.14089

    Article  CAS  PubMed  Google Scholar 

  • Gronwall J, Jonsson AC (2017) Regulating effluents from India’s textile sector: new commands and compliance monitoring for zero liquid discharge. Law Env’t Dev J 13:13

    Google Scholar 

  • Gupta S, Satpathy B, Gakhreja S, Dash Nath D (2022) Textile Industry and Infrastructure: an evolutionary study on industrial growth and its impact on tribal youth of Rajasthan, India. Utkal Histor Res J XXXV(12):64–77

    Google Scholar 

  • Han X, Zhang D, Yan J, Zhao S, Liu J (2020) Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards zero liquid discharge: energetic, economic and environmental analyses. J Clean Prod 10(261):121144

    Article  Google Scholar 

  • Haque MS, Nahar N, Sayem SM (2021) Industrial water management and sustainability: development of SIWP tool for textile industries of Bangladesh. Water Resour Ind 25:100145. https://doi.org/10.1016/j.wri.2021.100145

    Article  Google Scholar 

  • Homem NC, de Camargo Lima Beluci N, Amorim S, Reis R, Vieira AMS, Vieira MF, Bergamasco R, Amorim MTP (2019) Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci 486:499–507. https://doi.org/10.1016/J.APSUSC.2019.04.276

    Article  ADS  CAS  Google Scholar 

  • Huang L, Cheng S, Hassett DJ, Gu T (2012) Wastewater treatment with concomitant bioenergy production using microbial fuel cells. Adv Water Treat Pollut Pre 405–452

  • Hussain T, Wahab A (2018) A critical review of the current water conservation practices in textile wet processing. J Clean Prod 198:806–819

    Article  CAS  Google Scholar 

  • Hussein FH (2013) Chemical properties of treated textile dyeing wastewater. Asian J Chem 25(16)

  • Ibrahim Y, Banat F, Naddeo V, Hasan SW (2019) Numerical modeling of an integrated OMBR-NF hybrid system for simultaneous wastewater reclamation and brine management. Euro-Mediterranean J Environ Integr 4:1–14

    Article  Google Scholar 

  • Indian Chemical News (ICN) Bureau (2022) Evonik opens first zero liquid discharge plant in India. https://catalysts.evonik.com/en/saving-water-and-reducing-waste-evonik-opens-its-first-zero-liquid-discharge-plant-in-india173189.html#:~:text=Essen%2FDombivli.,Evonik%20Catalysts%20has%20opened%20a%20new%20Zero%20Liquid%20Discharge%20(ZLD,considered%20waste%20into%20saleable%20products. Assessed on 08 April 2023

  • Ismail AM, Loganathan M, Theodor PA (2012) Effect of bioadsorbents in removal of colour and toxicity of textile and leather dyes. J Eco Biotechnol 4(1):1–10. https://updatepublishing.com/journal/index.php/jebt/article/view/160

  • Jadeja NB, Banerji T, Kapley A, Kumar R (2022) Water pollution in India – current scenario. Water Secur 16:100119. https://doi.org/10.1016/J.WASEC.2022.100119

    Article  Google Scholar 

  • Jahan N, Tahmid M, Shoronika AZ, Fariha A, Roy H, Pervez MN, Cai Y, Naddeo V, Islam MS (2022) A comprehensive review on the sustainable treatment of textile wastewater: zero liquid discharge and resource recovery perspectives. Sustainability 14(22):15398. https://doi.org/10.3390/SU142215398

    Article  Google Scholar 

  • Jiang M, Ye K, Deng J, Lin J, Ye W, Zhao S, Van Der Bruggen B (2018) Conventional ultrafiltration as effective strategy for dye/salt fractionation in textile wastewater treatment. Environ Sci Technol 52(18):10698–10708. https://doi.org/10.1021/ACS.EST.8B02984/SUPPL_FILE/ES8B02984_SI_001.PDF

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kanagaraj J, Panda RC, Kumar V (2020) Trends and advancements in sustainable leather processing: Future directions and challenges—a review. J Environ Chem Eng 8(5):104379

    Article  Google Scholar 

  • Li M, Li K, Wang L, Zhang X (2020) Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation. Water Res 172. https://doi.org/10.1016/J.WATRES.2020.115488

  • Liang J, Ning XA, Kong M, Liu D, Wang G, Cai H, Yuan Y (2017) Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Environ Pollut 231:115–122

  • Lin J, Lin F, Chen X, Ye W, Li X, Zeng H, Van Der Bruggen B (2019) Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind Eng Chem Res. https://doi.org/10.1021/ACS.IECR.9B01353/SUPPL_FILE/IE9B01353_SI_001.PDF

    Article  Google Scholar 

  • Lin J, Ye W, Huang J, Ricard B, Baltaru MC, Greydanus B, Van der Bruggen B (2015) Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sustain Chem Eng 3(9):1993–2001

  • Long J-J, Liu B, Wang G-F, Shi W (2017) Photocatalitic stripping of fixed reactive red X-3B dye from cotton with nano-TiO2/UV system. J Clean Prod 165:788–800. https://doi.org/10.1016/j.jclepro.2017.07.149

    Article  CAS  Google Scholar 

  • Maiti S, Kane P, Pandit P, Singha K, Maity S (2021) Zero liquid discharge wastewater treatment technologies. Sustain Technol Textile Wastew Treat 209–234. https://doi.org/10.1016/B978-0-323-85829-8.00006-7

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278

    Article  CAS  PubMed  Google Scholar 

  • Manickam P, Vijay D (2021) 2 - Chemical hazards in textiles. In S. S. B. T.-C. M. in T. and F. Muthu (Ed.), The Textile Institute Book Series, Woodhead Publishing, pp 19–52. https://doi.org/10.1016/B978-0-12-820494-8.00002-2

  • Matin A, Islam MR, Wang X, Huo H, Xu G (2023) AIoT for sustainable manufacturing: overview, challenges, and opportunities. Int Things 24:100901. https://doi.org/10.1016/j.iot.2023.100901

    Article  Google Scholar 

  • Moga IC, Covaliu IC, Matache MG (2018) Advanced wastewater treatment stage for textile industry. Ind Text 69(6):478

    CAS  Google Scholar 

  • Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T (2021) Integrating micro-algae into wastewater treatment: a review. Sci Total Environ 752:142168. https://doi.org/10.1016/j.scitotenv.2020.142168

    Article  ADS  CAS  PubMed  Google Scholar 

  • Moreira S, Milagres AM, Mussatto SI (2014) Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Sep Purif Technol 135:183–189

    Article  CAS  Google Scholar 

  • Moreira VR, Lebron YAR, Couto CF, Maia A, Moravia WG, Amaral MCS (2022) Process development for textile wastewater treatment towards zero liquid discharge: integrating membrane separation process and advanced oxidation techniques. Process Saf Environ Prot 157:537–546. https://doi.org/10.1016/J.PSEP.2021.10.037

    Article  CAS  Google Scholar 

  • Mostafa M (2015) Wastewater treatment in textile Industries-the concept and current removal technologies. J Biodivers Environ Sci 7(1):501–525

    Google Scholar 

  • Mukherjee A, Satish A, Mullick A, Rapolu J, Moulik S, Roy A, Ghosh AK (2021) Paradigm shift toward developing a zero liquid discharge strategy for dye-contaminated water streams: a green and sustainable approach using hydrodynamic cavitation and vacuum membrane distillation. ACS Sustain Chem Eng 9(19):6707–6719. https://doi.org/10.1021/ACSSUSCHEMENG.1C00619/SUPPL_FILE/SC1C00619_SI_001.PDF

    Article  CAS  Google Scholar 

  • Mutlu NG, Altuntas S (2019) Risk analysis for occupational safety and health in the textile industry: integration of FMEA, FTA, and BIFPET methods. Int J Ind Ergon 72:222–240. https://doi.org/10.1016/j.ergon.2019.05.013

    Article  Google Scholar 

  • Namsaraev ZB, Gotovtsev PM, Komova AV, Vasilov RG (2018) Current status and potential of bioenergy in the Russian Federation. Renew Sustain Energy Rev 81:625–634. https://doi.org/10.1016/j.rser.2017.08.045

    Article  Google Scholar 

  • Navin PK, Kumar S, Mathur M (2018) Textile wastewater treatment: a critical review. Int J Eng Res Technol 6(11):1–7

    Google Scholar 

  • Nidheesh PV, Trellu C, Vargas HO, Mousset E, Ganiyu SO, Oturan MA (2023) Electro-Fenton process in combination with other advanced oxidation processes: challenges and opportunities. Curr Opin Electrochem 37:101171. https://doi.org/10.1016/j.coelec.2022.101171

    Article  CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos TAP, Gonçalves F, Pereira R (2018) Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents. Environ Technol 39(12):1586–1596. https://doi.org/10.1080/09593330.2017.1334093

    Article  CAS  PubMed  Google Scholar 

  • Okeke ES, Ezeorba TPC, Okoye CO, Chen Y, Mao G, Feng W, Wu X (2022) Analytical detection methods for azo dyes: a focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J Food Compos Anal 114:104778. https://doi.org/10.1016/j.jfca.2022.104778

    Article  CAS  Google Scholar 

  • Omerspahic M, Al-Jabri H, Siddiqui SA, Saadaoui I (2022) Characteristics of desalination brine and its impacts on marine chemistry and health, with emphasis on the Persian/Arabian gulf: a review. Front Mar Sci 9:845113

    Article  Google Scholar 

  • Onishi VC, Ruiz-Femenia R, Salcedo-Díaz R, Carrero-Parreño A, Reyes-Labarta JA, Caballero JA (2017) Optimal shale gas flowback water desalination under correlated data uncertainty. Comput Aided Chem Eng 40:943–948. https://doi.org/10.1016/B978-0-444-63965-3.50159-8

    Article  CAS  Google Scholar 

  • Özgün H, Sakar H, Ağtaş M, Koyuncu İ (2023) Investigation of pre-treatment techniques to improve membrane performance in real textile wastewater treatment. Int J Environ Sci Technol 20(2):1539–1550

    Article  Google Scholar 

  • Panagopoulos A (2021) Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach - a techno-economic evaluation. J Environ Chem Eng 9(4):105338. https://doi.org/10.1016/J.JECE.2021.105338

    Article  CAS  Google Scholar 

  • Panagopoulos A (2022a) Brine management (saline water & wastewater effluents): sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD & ZLD) desalination systems. Chem Eng Processing-Process Intensification 21:108944

    Article  Google Scholar 

  • Panagopoulos A, Giannika V (2022) Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge (MLD/ZLD) strategies. J Environ Manag 324:116239. https://doi.org/10.1016/J.JENVMAN.2022.116239

    Article  CAS  Google Scholar 

  • Panagopoulos A, Haralambous KJ (2020a) Minimal liquid discharge (MLD) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery–analysis, challenges and prospects. J Environ Chem Eng 8(5):104418

    Article  CAS  Google Scholar 

  • Panagopoulos A, Haralambous KJ (2020b) Minimal liquid discharge (MLD) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery – analysis, challenges and prospects. J Environ Chem Eng 8(5):104418. https://doi.org/10.1016/J.JECE.2020.104418

    Article  CAS  Google Scholar 

  • Panagopoulos A (2022b) Brine management (saline water & wastewater effluents): sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD & ZLD) desalination systems. Chem Eng Process Process Intensif 21:108944

  • Partal R, Basturk I, Murat Hocaoglu S, Baban A, Yilmaz E (2022) Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: a case study. Water Resour Ind 27:100174. https://doi.org/10.1016/J.WRI.2022.100174

    Article  CAS  Google Scholar 

  • Paździor K, Bilińska L, Ledakowicz S (2019) A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem Eng J 376:120597. https://doi.org/10.1016/J.CEJ.2018.12.057

    Article  Google Scholar 

  • Praveen KGN, Bhat SK (2012) Decolorization of azo dye Red 3BN by bacteria. Int Res J Biol Sci 1(5):46–52

    Google Scholar 

  • Radhakrishnan S (2014) Roadmap to sustainable textiles and clothing, 41–62. https://doi.org/10.1007/978-981-287-065-0

  • Rahimi S, Modin O, Mijakovic I (2020) Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 43:107570. https://doi.org/10.1016/j.biotechadv.2020.107570

    Article  CAS  PubMed  Google Scholar 

  • Raja AS, Arputharaj A, Saxena S, Patil PG (2019) Water requirement and sustainability of textile processing industries. Water in textiles and fashion 155–173

  • Ramesh K, Gnanamangai BM, Mohanraj R (2021) Investigating techno-economic feasibility of biologically pretreated textile wastewater treatment by electrochemical oxidation process towards zero sludge concept. J Environ Chem Eng 9(5):106289. https://doi.org/10.1016/J.JECE.2021.106289

    Article  CAS  Google Scholar 

  • Ramprasad C, Rangabhashiyam S (2020) Chapter 12 - The role of sustainable decentralized technologies in wastewater treatment and reuse in subtropical Indian conditions. Singh P, Milshina Y, Tian K, Gusain D, J. P. B. T.-W. C, W. T. in, Bassin BN (eds.), pp. 253–268, Elsevier. https://doi.org/10.1016/B978-0-12-818339-7.00012-6

  • Rao NN, Rao SN (2022) Zero liquid discharge: water recycling in industries towards sustainability. Sustain Eng Energy Environ: Challenges and Opportunities 281–305

  • Ricky R, Shanthakumar S, Ganapathy GP, Chiampo F (2022) Zero liquid discharge system for the tannery industry—an overview of sustainable approaches. Recycling 7(3):31

    Article  Google Scholar 

  • Rott U, Minke R (1999) Overview of wastewater treatment and recycling in the textile processing industry. Water Sci Technol 40(1):137–144

    Article  CAS  Google Scholar 

  • Saini P, Bulasara VK, Reddy AS (2018) Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment, 206(2):227-236.https://doi.org/10.1080/00986445.2018.1482281

  • SAMCO (2017) How much will a zero liquid discharge system cost your facility? JANUARY 2, 2017. https://samcotech.com/how-much-will-a-zero-liquid-discharge-system-cost-your-facility/ Assessed on 08 April, 2023

  • Sanchez Armengol E, Blanka Kerezsi A, Laffleur F (2022) Allergies caused by textiles: control, research and future perspective in the medical field. Int Immunopharmacol 110:109043. https://doi.org/10.1016/j.intimp.2022.109043

    Article  CAS  PubMed  Google Scholar 

  • Sankar PR, Rajesh S (2017) A study on zero liquid discharge plant for dyeing industry. Int J Sci Eng Res 5(4):67–72

    Google Scholar 

  • Sayın FE, Karatas O, Özbay İ, Gengec E, Khataee A (2022) Treatment of real printing and packaging wastewater by combination of coagulation with Fenton and photo-Fenton processes. Chemosphere 306:135539. https://doi.org/10.1016/j.chemosphere.2022.135539

    Article  CAS  PubMed  Google Scholar 

  • Şen S, Demirer GN (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37(8):1868–1878

    Article  PubMed  Google Scholar 

  • Shabbir M (2019) Textiles and clothing: environmental concerns and solutions. Text Cloth: Environmental Concerns and Solutions 1–323. https://doi.org/10.1002/9781119526599

  • Shirvanimoghaddam K, Motamed B, Ramakrishna S, Naebe M (2020) Death by waste: fashion and textile circular economy case. Sci Total Environ 718:137317. https://doi.org/10.1016/J.SCITOTENV.2020.137317

    Article  ADS  CAS  PubMed  Google Scholar 

  • Siddique K, Rizwan M, Shahid MJ, Ali S, Ahmad R, Rizvi H (2017) Textile wastewater treatment options: a critical review. Enhancing Cleanup of Environmental Pollutants: Volume 2: Non-Biological Approaches 183–207

  • Sikka MP, Sarkar A, Garg S (2022) Artificial intelligence (AI) in textile industry operational modernization. Res J Text Apparel, ahead-of-print(ahead-of-print). https://doi.org/10.1108/RJTA-04-2021-0046

  • Sima S, Restiani P (2018) Water governance mapping report: textile industry water use in Ethiopia. SIWI and STWI 1–31

  • Srebrenkoska V, Zhezhova S, Risteski S, Golomeova S (2014) Methods for waste waters treatment in textile industry. In International scientific conference "UNITECH" 21–22

  • Srivastava A, Bandhu S (2022) Biotechnological advancements and challenges in textile effluents management for a sustainable bioeconomy: Indian case studies. Case Stud Chem Environ Eng 100186

  • Talouizte H, Merzouki M, Benlemlih M (2013) Treatment of real textile wastewater using SBR technology: effect of sludge age and operational parameters. J Biotechnol Lett 4(2):79

    Google Scholar 

  • Tandon N, Reddy EE (1990) A study on emerging trends in textile industry in India. Ratio 104(108):212

    Google Scholar 

  • Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res 55(16):4363–4389

    Article  CAS  Google Scholar 

  • Vardhman Textiles (VT) (2023) Limited Annual Report 2019–20", Vardhman Textiles Limited chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.vardhman.com/Document/Report/Financials/Annual/Vardhman%20Textiles%20Ltd/Annual_Report_2019-20.pdf. Assessed on 06 April 2023

  • Vardhman Textiles (2023) ANNUAL REPORT. 2018–19 Of Vardhman Textiles, NOTICE CONVENING 46TH ANNUAL GENERAL MEETING. https://www.vardhman.com/Document/Report/Compliances/General/Vardhman%20Textiles%20Ltd/Notice_of_46th_AGM.pdf Assessed on 06 April 2023

  • Tong T, Elimelech M (2016a) The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol 50(13):6846–6855

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tong T, Elimelech M (2016b) The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol 50(13):6846–6855. https://doi.org/10.1021/ACS.EST.6B01000/ASSET/IMAGES/LARGE/ES-2016-01000H_0005.JPEG

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tounsadi H, Metarfi Y, Taleb M, El Rhazi K, Rais Z (2020) Impact of chemical substances used in textile industry on the employee’s health: epidemiological study. Ecotoxicol Environ Saf 197:110594. https://doi.org/10.1016/j.ecoenv.2020.110594

    Article  CAS  PubMed  Google Scholar 

  • Vergili I, Kaya Y, Sen U, Gönder ZB, Aydiner C (2012) Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach. Resour Conserv Recycl 58:25–35. https://doi.org/10.1016/J.RESCONREC.2011.10.005

    Article  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168

    Article  CAS  Google Scholar 

  • Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment. Adv Treat Text Effluent 5:91–116

    Google Scholar 

  • Wang Z, Deshmukh A, Du Y, Elimelech M (2020) Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water Res 170:115317. https://doi.org/10.1016/J.WATRES.2019.115317

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gong J, Wang Q, Qiao X (2021) Emergency management science and technology: An international transdisciplinary platform. Emerg Manag Sci Technol 1(1):1–3

    Article  Google Scholar 

  • Wu L, Xu Y, Lv X, Chang X, Ma X, Tian X, Kong X (2021) Impacts of an azo food dye tartrazine uptake on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in crucian carp (Carassius auratus). Ecotoxicol Environ Saf 223:112551

  • Yaqub M, Lee W (2019) Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review. Sci Total Environ 681:551–563

    Article  ADS  Google Scholar 

  • Yukseler H, Uzal N, Sahinkaya ERKAN, Kitis M, Dilek FB, Yetis U (2017) Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill. J Environ Manag 203:1118–1125

    Article  CAS  Google Scholar 

  • Zainith SURABHI, Sandhya S, Saxena GAURAV, Bharagava RN (2016) Microbes an ecofriendly tool for the treatment of industrial waste waters. Microbes Environ Manag 2016:75–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search was performed by Radha, Ashok Pundir, Neeraj Kumari, Niharika Sharma, and Suraj Prakash. The first draft of the manuscript was written by Ashok Pundir, Neeraj Kumari, Niharika Sharma, Marisennayya Senapathy, Sunil Kumar, and Suraj Prakash. Authors including Mohinder Singh Thakur, Bhasker Goel, Sangram Dhumal, Jose Manuel Lorenzo, Ettiyagounder Parameswari, Sheetal Vishal Deshmukh, and Manoj Kumar made substantial contributions to the conception or design of the work, analysis of data, and revised the manuscript draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Guilherme Luiz Dotto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• ZLD tech reduces water usage and impact in textiles, enabling sustainability.

• Manufacturers report water and effluent reduction with ZLD implementation.

• Integrated approaches enhance wastewater treatment efficiency.

• Membrane filtration and biological processes recover resources from textile wastewater.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pundir, A., Thakur, M.S., Radha et al. Innovations in textile wastewater management: a review of zero liquid discharge technology. Environ Sci Pollut Res 31, 12597–12616 (2024). https://doi.org/10.1007/s11356-024-31827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-31827-y

Keywords

Navigation